
Lecture 11: Perturbative Renormalization Group

Naoki KAWASHIMA

ISSP, U. Tokyo

June 30, 2025

Statistical Mechanics I: Lecture 11 June 30, 2025 1 / 21

In this lecture, we see ...

When there is a fixed point for which we know its OPE, we can
derive, by a perturbative argument, a set of equations describing RG
flow around it. (Then, we can study the behavior of other fixed points
in its vicinity, as we will discuss in the next lecture.)

We can obtain the renormalized Hamiltonian up to the 2nd order (or
more if we try harder) in the case of GFP, which is the lowest
non-trivial order.
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General perturbative RG

We decompose the field operator into the high-frequency component
and the low-frequency component.
Tracing out the high-fruquency component, followed by rescaling,
yields the RG flow equations.
In the RGT from the scale a to ab (b = 1 + λ), the product of two
scaling operators within the distance of a, gives rise to new
perturbative terms through OPE, which contributes non-linear terms
in the RG flow equation.
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Expanding the Hamiltonian around a fixed point

Consider some fixed-point Hamiltonian, H∗
a, with short-distant cut-off

(lattice constant) a, and consider a general Hamiltonian expressed in
terms of the scaling-operators at H∗

a:

Ha ≡ H∗
a + Va

(
Va ≡

∑
α

gα

∫
a
dxϕα(x)

)

where ϕα is the scaling operator at H∗ with the dimension xα.

ϕα(x) → ϕ′α(x
′) = Rbϕα(x) = bxαϕα(x)
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Outline of RGT for the expansion

We carry out the general RGT program: partial trace and rescaling.

We introduce the ultra-violet cut-off, a, which means: (i) When we
expand e−Va(ϕ), the spatial integration like∫

a
dx1dx2 · · · dxn ϕα1(x1)ϕα1(x2) · · ·ϕα1(xn)

is restricted in the region where no two xi and xj are closer than a.
(ii) The field ϕα contains only low-frequency component with
k < 1/a.

The partial trace will shift the cut-off a to a′ ≡ eλa ≈ (1 + λ)a.

The OPE is applied to every pair of operators that come within the
mutual distance of a′, and taking the summation with respect to the
relative position of the two (This yields the factor Ωd(a

′d − ad)
≈ Ωddλa

d, where Ωd is the volume of unit sphere.).
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The partial trace

We decompose the field operator as ϕ = ϕℓ + ϕs whre ϕℓ and ϕs are
the long wave-length (k < 1/a′) and the short (1/a′ < k < 1/a)
wave-length components of ϕ, respectively.

In what follows, Ha(≡ H∗
a + Va) is the perturbed Hamiltonian, H∗

a is
the fixed point Hamiltonian, Zs is the short wave-length contribution
to the partition function, H̃a′ is the coarse-grained (but not yet
re-scaled) perturbed Hamiltonian, and H̃∗

a is the coarse-grained
fixed-point Hamiltonian. More specifically,

Zse
−H̃∗

a′ (ϕ
ℓ) ≡ Tr

{ϕs}
e−H∗

a(ϕ), (1)

Zse
−H̃a′ (ϕ

ℓ) ≡ Tr
{ϕs}

e−Ha(ϕ)

= Tr
{ϕs}

{
e−H∗

a(ϕ)

(
1− Va(ϕ) +

1

2
(Va(ϕ))

2 − · · ·
)}
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The short wave-length average and the 1st order term

The partial trace over ϕs goes like

Tr
{ϕs}

e−H∗
a(ϕ)−Va(ϕ) = Tr

{ϕs}
e−H∗

a(ϕ)

(
1− Va(ϕ) +

1

2
V 2
a (ϕ) + · · ·

)
= Zse

−H̃∗
a′ (ϕ

ℓ)

(
1− ⟨Va(ϕ)⟩s +

1

2

〈
V 2
a (ϕ)

〉
s
+ · · ·

)
(2)

where the short w.l. average is defined as

⟨· · · ⟩s ≡ Tr
{ϕs}

e−H∗
a(ϕ) · · · / Tr

{ϕs}
e−H∗

a(ϕ).

The first order term is simply

⟨Va(ϕ)⟩s =
∫
a
dx
∑
α

gα⟨ϕα(x)⟩s =
∫
a′
dx
∑
α

gαϕ
ℓ
a(x) = Va′(ϕ

ℓ)
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The 2nd order term

We can split the double integration into 2 parts:

⟨V 2
a (ϕ)⟩s =

∫
a
dxdy

∑
α,β

gαgβ⟨ϕα(x)ϕβ(y)⟩s

=
∑
α,β

gαgβ

(∫
a′
+

∫
a<|x−y|<a′

)
dxdy⟨ϕα(x)ϕβ(y)⟩s (3)

The first term is simply (Va′(ϕ
ℓ))2:∑

α,β

gαgβ

∫
a′
dxdy⟨ϕα(x)ϕβ(y)⟩s

=
∑
α,β

gαgβ

∫
a′
dxdy ϕℓα(x)ϕ

ℓ
β(y) = (Va′(ϕ

ℓ))2
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The “collision” term

To conform the new cutoff a′, the OPE must be applied to the
second term in (3) representing operators too close to each other:∑

α,β

gαgβ

∫
a<|x−y|<a′

dxdy ⟨ϕα(x)ϕβ(y)⟩s

=
∑
α,β

gαgβ

∫
a<|x−y|<a′

dxdy
∑
µ

cµαβ
|x− y|xα+xβ−xµ

ϕℓµ

(
x+ y

2

)

=
∑
α,β

gαgβΩd((a
′)d − ad)

∫
a′
dx
∑
µ

cµαβ
axα+xβ−xµ

ϕℓµ(x)

= λ

∫
a′
dx
∑
µ

∑
α,β

cµαβgαgβ(Ωdda
yα+yβ−yµ)

ϕℓµ(x)
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The final form of the 2nd order term

Putting together, the 2nd order term in (3) becomes

⟨(Va(ϕ))2⟩s

= Zse
−H̃∗

a′

(Va′(ϕ
ℓ))2 + λ

∑
µ,α,β

(
cµαβgαgβ(Ωdda

yα+yβ−yµ)
)∫

a′
dxϕℓµ(x)


= Zse

−H̃∗
a′
(
(Va′(ϕ

ℓ))2 − 2V
(int)
a′ (ϕℓ)

)
V

(int)
a′ (ϕℓ) ≡ −λ

2

∑
µ

∑
α,β

cµαβgαgβ(Ωdda
yα+yβ−yµ)

∫
a′
dxϕℓµ(x).

Thus, the expansion (2) becomes

Tr
{ϕs}

e−H∗
a(ϕ)−Va(ϕ) = Zse

−H̃∗
a′

(
1− Va′ +

1

2
(Va′)

2 − V
(int)
a′ + · · ·

)
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Summary of partial trace

Finally, the partial trace results in

Tr
{ϕs}

e−H∗
a(ϕ)−Va(ϕ) ≈ Zse

−H̃∗
a′ (ϕ

ℓ)−Va′ (ϕ
ℓ)−V

(int)

a′ (ϕℓ)

Therefore, our Hamiltonian after the partial trace is

H̃a′(ϕℓ) = H̃∗
a′(ϕℓ) + Va′(ϕℓ) + V

(int)
a′ (ϕℓ)

= H̃∗
a′(ϕℓ) +

∑
µ

gµ

∫
a′
dxϕℓµ(x)

− λ

2

∑
µαβ

cµαβgαgβdΩda
yα+yβ−yµ

∫
a′
dxϕℓµ(x)

= H̃∗
a′(ϕℓ) +

∑
µ

g̃µ

∫
a′
dxϕℓµ(x)

where g̃µ ≡ gµ − λ

2

∑
µαβ

cµαβgαgβdΩda
yα+yβ−yµ

Statistical Mechanics I: Lecture 11 June 30, 2025 11 / 21

Rescaling and RG flow equation

By re-scaling ( x′ ≡ b−1x and ϕ′µ(x
′) ≡ bxµϕℓµ(x) ),

H′
a(ϕ

′) = H̃a′(ϕ
ℓ) = H∗

a(ϕ
′) +

∑
µ

g̃µ

∫
a
dx′ byµϕ′µ(x

′)

⇒ g′µ = byµ g̃µ = byµ

gµ − λ

2

∑
αβ

cµαβgαgβdΩda
yα+yβ−yµ

 .

By absorbing the factor d
2Ωda

yµ in the definition of gµ and g′µ,

g′µ = (1 + λ)yµ ×

gµ − λ
∑
αβ

cµαβgαgβ


dgµ
dλ

= yµgµ −
∑
αβ

cµαβgαgβ +O(g3)
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Why can we apply OPE? I

To deal with the “collision” term, we used the OPE that is supposed to be
only asymptotically correct, where the involving operators are viewed from
another point far enough to them. So, can we justify the usage of the OPE
in the perturbative RG? What view point should we assume “far enough”?

In the case of the collision term treatment, what we really need is the
property that, under the coarse-grained Hamiltonian, the correlation
function ⟨ψ1(x)ψ2(y)⟩ between two points far from each other shows the
correct asymptotic behavior, i.e., the same asymptotic behavior as the
Hamiltonian before the coarse-graining.

We cannot prove this equivalence in a mathematically rigorous fashion. As
shown below, however, at least we can elucidate the assumption we are
making here.
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Why can we apply OPE? II

The correlation function can be expressed as

⟨ψ1(x)ψ2(y)⟩ = Z−1 Tr
{ϕl}

(
e−H∗

a′ (ϕ)−Va′ (ϕ
l)−V

(int)

a′ (ϕl)ψ1(x)ψ2(y)
)

By expanding with respect to V
(int)
a′ , we obtain

⟨ψ1(x)ψ2(y)⟩ ∝ Tr
{ϕl}

(
e−H∗−V

∑
z1,z2,···

ψ1(x)ψ2(y)V
(int)(z1)V

(int)(z2) · · ·

)
.

Consider that we restrict the summation
∑

z1,z2,··· so that any two among
x,y, z1, z2, · · · are “far enough”, say the distance being more than a
certain value R, to justify the use of the OPE. The assumption we made is
that the asymptotic behavior of the correlation function ⟨ψ1(x)ψ2(y)⟩ in
the |x− y| → ∞ limit comes from this restricted summation. This is
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Why can we apply OPE? III

natural because all the other contribution is the one from highly restricted
configuration that at least one pair of points comes within the distance R,
which effectively reduces the dimension of the spatial integration by d.
Therefore, relative weight of such terms will become smaller as the
distance x− y gets larger and eventually zero in the infinite distance limit.
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Perturbative RG around GFP

The criticality of the Ising model in d > 4 is controled by the
Gaussian fixed-point, though the critical behavior is modified by the
dangerously irrelevant field.

For d < 4, the Gaussian fixed-point is not stable w.r.t. the scaling
operator ϕ4. This motivates us to look for another fixed point by
examining the perturbative RG flow around the Gaussian fixed point.
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Critical property of the Ising model above 4-dimensions

Consider the ϕ4 model, with ϕ2 and ϕ4 terms. From the viewpoint of
the perturbative RG around GFP, it is convenient to use the scaling
fields ϕ2 and ϕ4, instead of ϕ2 and ϕ4:

H =

∫
dx
(
|∇ϕ|2 + tϕ2 + uϕ4 − hϕ

)
The scaling eigenvalues for these terms are

x2 = 2x = d− 2 ⇒ y2 = d− x2 = 2

x4 = 4x = 2(d− 2) ⇒ y4 = d− x4 = 4− d.

Since ϕ4 is irrelevant if d > 4, the critical behavior of the ϕ4 model at
t = 0 (and therefore the Ising model at T = Tc as well) is described
by the GFP.
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Dangerous irrelevant operator for d > 4

According to the general argument (see Lecture 7), the spontaneous
magnetization should scale like

m ∼ L−d+yh = L−xh ∼ t
xh
yt = t

d−2
4 . (wrong)

However, we saw that the mean-field theory correctly describes the
critical behavior for d > 4 (Ginzburg criterion), which means that

m ∼ t
1
2 . (correct)

This apparent contradiction comes from the nature of the irrelevant
field u. Specifically, since the ϕ4 model at or below the critical point
(t ≤ 0) is not well-defined when u = 0, we cannot simply put u = 0
in the scaling form as we did in the general argument.
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Perturbative RG around GFP

We have derived the general RG flow
equation around a fixed-point.

dgµ
dλ

= yµgµ −
∑
αβ

cµαβgαgβ (4)

If we apply this to GFP, we immediately
notice that, in d > 4, there is no relevant
field other than t, implying that the GFP
governs the critical phenomena of the ϕ4

model.
Even below four dimensions, we may be able to obtain a new fixed
point from (4) if it is near the GFP.

In other words, we may try to find gµ that makes the r.h.s. of (4)
zero and deduce its properties from (4). (Next lexture)
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Summary

We have derived a set of equations describing RG flow around a given
fixed point.

We can obtain the renormalized Hamiltonian up to the 2nd order (or
more if we try harder) in the case of GFP, which is the lowest
non-trivial order.

Above four dimensions, the critical point is controled by the Gaussian
fixed point.

However, the dangerously irrelevant field, u, modifies the critical
beheviors to mean-field like.

Below four dimensions, the critical point is not controled by the
Gaussian fixed point because u becomes relevant.

We may be able to find the “true” fixed point by analyzing the RG
flow equation. (Next lecture)
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Exercise 11.1: We saw an apparent contradiction between the general
scaling argument and the mean-field behaviors expected from the
Ginzburg criterion. Think of a scaling form of the singular part of the free
energy that obeys the scaling properties expected from the general
argument, and, at the same time, produces the correct mean-field critical
behaviors.
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