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In this lecture, we see ...

The Migdal-Kadanoff RG was easy to compute, but, we do not know
when we can expect this approximation to be good or how we can
improve it systematically.

Real-space renormalization group method based on tensor-network
representation (TNRG) provides us with a method for computing the
partition function. While TNRG is also an approximation, it comes
with a method for systematic improvements, and may produce the
exact critical exponents in the limit.

Statistical Mechanics I: Lecture 9 June 10, 2024 2 / 28



Tensor-network renormalization group (TNRG)

Most of statistical-mechanical models on lattices are tensor networks.

Quantum many-body states on lattices are also described by tensor
networks.

As we have seen, after renormalization transformation, we need
infinitely many parameters to describe the resulting system.

By working with the TN representation, and introducing “data
compression” at all length scales, we can overcome the disadvantage
of the previous approximates for the real-space RG.
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What is a tensor network?

Consider a graph consisting of circles and crosses connected by lines
so that all lines are terminated by circles or crosses. A cross can
terminate only one line.
To each line, we assign an integer variable. To each circle we assign a
degree-k tensor Tσ1σ2···σk

where k is the number of lines connected to
the circle, and σk is the variable assigned to each line. We call the
variable virtual if the line is terminated by two circles, whereas we call
it physical if an end of the line is terminated by a cross.
Consider the product of all the tensors, and apply the Einstein
convention. The result is some function of physical variables. This is
the tensor network representation of the function.

Statistical Mechanics I: Lecture 9 June 10, 2024 4 / 28



Statistical-mechanical models are tensor networks

The partition function of lattice models can be regarded as a TN with no
physical variables. In the case of the Ising model, for example,

Z =
∑
S

∏
p=(i,j,k,l)

WSiSjSkSl

(
WSiSjSkSl

≡ eK(SiSj+SjSk+SkSl+SlSi)
)

We can regard WSiSjSkSl
as a degree-4 tensor. Then, the above equation

is a TN representation of the partition function.
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Wave function can be represented as TN

Consider a quantum many-body system defined on N sites.
The local Hilbert space Hi (i = 1, 2, · · · , N) associated with the site
i is spanned by the local state vectors, |Si⟩i, with Si taking one of d
values.
The whole Hilbert space is the product of them H ≡

⊗
iHi.

Any global wave function |Ψ⟩ can be expanded as

|Ψ⟩ ≡
∑
{Si}

CS1S2···SN
|S1, S2, · · · , SN ⟩ ≡

∑
S

CS |S⟩

where S ≡ (S1, S2, · · · , SN ), and |S⟩ ≡ |S1⟩1 ⊗ |S2⟩2 ⊗ · · · ⊗ |SN ⟩N .
In the case of the S = 1/2 Heisenberg model, for example, |S⟩ may
be the simultaneous eigenstates of the z-components of all the spin
operators, i.e., Ŝz

i |S⟩ = Si|S⟩ where Ŝz
i is the spin operator at i.

Now, CS1S2···SN
can be viewed as a degree-N tensor.

It may be approximated by some tensor network, i.e, CS ≈
Cont (

∏
k Tk) .
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TN is a compressed representation of a wave function

CS ≈ Cont

(∏
k

Tk

)

=

Note that CS has dN parameters (d = 2 for S = 1/2 spin systems),
whereas the tensor network can be specified by only O(N) number of
parameters. By the tensor network representation, we may be able to
reduce the computation for large N down to a manageable level.
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Trivial TNRG

Let us condider classical systems, and ask how
we can use the tensor network for RG.

How can we replace the original tensor lattice
into something similar but with the unit cell
bigger than the original?

Let us solve this problem starting from the trivial
TNRG:

T ′
S′
1,S

′
2,S

′
3,S

′
4
≡

∑
S9,S10,S11,S12

(T1)S1,S9,S12,S8

× (T2)S2,S3,S10,S9(T3)S10,S4,S5,S11(T4)S12,S11,S6,S7

where S′
i is simply “bundled spins”, i.e.,

S′
1 ≡ (S1, S2), S′

2 ≡ (S3, S4), · · ·

⇓
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What’s good and bad with trivial TNRG?

Using T ′, we can exactly express the original
partition function with lattice constant twice
larger than the original, which is good.

However, the dimension of each index of T ′ is χ2

if the index dimension (called “bond dimension”
in many papers) of Ti is χ.

Starting with the initial bond dimension χ0, it
increases very quickly as χ0, χ

2
0, χ

4
0, χ

8
0, · · · .

To make the whole procedure practically useful
for large systems, we need to set the upper
bound, denoted as χ hereafter, on the bond
dimension.

Data compression is necessary!
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Rank reducer and RG transformation (RGT)

What we need is a ‘rank-reducer’.

A rank-reducer is a matrix with rank χ, instead
of χb, that approximates the identity matrix.

If a good rank-reducer exists, we can
singular-value-decompose (SVD) it and insert
the SVDed rank-reducer as illustrated.

Then, by cutting the network at the reduced
indices and tracing out all the internal degrees of
freedom within each cluster, we can define the
renormalized tensor with index dimension χ, as
we desired.

Now, we must ask whether such a magical
rank-reducer exists or not, and if it does, how we
can compute it.
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A practical remark

For a few first repetitions of the RGTs, we do not use the
rank-reducer because the bond dimension does not exceed the
prefixed upper-bound χ initially even without the rank-reducer.

In the previous slide, we compressed 2x2
tensors into one coarse-grained tensor by
one step. This is conceptually simpler
but technically more expensive than han-
dling each direction one by one. In prac-
tice, the single-direction coarse-graining
is applied to each direction sequentially.
(The top on the right illustrates the “y-
direction” coarse-graining.) After apply-
ing the coarse-graining to y and then x
direction, we obtain something illustrated
in the lower panel.
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The rank reducer

We consider a χ2 × χ2 matrix P that has
the rank χ. We want P so that its insertion
cause as small change as possible. To reduce
computational burden, we consider the
change in a small sub-network represented
by A with only two tensors, rather than the
whole network.

The matrix A is a (χ4)× (χ2) matrix

whereas P is (χ2)× (χ2) with rank-χ.

Then, our problem is∗ to minimize C ≡ ||AP −A||2. With the singular
value decomposition A = V TΛU with Λ = diag(λ1, λ2, · · · ) , we have
C = Tr((AP −A)(AP −A)T) = Tr(Λ2(1− P̃ )(1− P̃ )T) (P̃ ≡ UTPU).
This suggests∗∗ that P is optimal when P̃ = 1χ, where 1χ is the
truncated identity matrix of rank χ. Thus the optimal is P = U1χU

T .
∗ This is just a compromise between the accuracy and the cost. (It would be better to minimize the error of the whole system,

not just A.) Also, preservation of the symmetries, such as reflection, may be also important, though we omit the issue here.

∗∗ A more rigorous proof can be made by the EYM theorem.
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Supplement: Theorem for Low-Rank Approximation (LRA)

Theorem 1 (Eckhart-Young-Mirsky)

For a given n×m matrix A, consider its
approimation by a rank-l (l ≤ m ≤ n) matrix X
and its error E2 = |A−X|2 where
|A|2 ≡ TrATA. Let A = UΛV T be the singular
value decomposition (SVD) of A with an n×m
diagonal matrix Λ and n and m dimensional
unitaries, U and V , respectively. Then,

E2 ≥ λ2
l+1 + λ2

l+2 + · · ·+ λ2
m

where λi is the i-th largest singular value. The
lower bound is attained by X ≡ Û Λ̂V̂ T where ‘ ’̂
represents truncation at the l-th row/column.

Λ ≡

λ1 0 · · · 0

0 λ2

. . .
.
.
.

.

.

.
. . .

. . . 0
0 · · · 0 λm
0 · · · · · · 0

.

.

.

.

.

.
0 · · · · · · 0


.

λ1 ≥ λ2 ≥ · · · ≥ λm ≥ 0
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TNRG provides accurate estimates

The free energy can be obtained
to the accuracy of nearly 8
digits. (“TRG” in the figure.)
(“TRG” is essentially the same, but technically different

way of realizing TNRG from the one discussed in this

lecture. See Levin and Nave, Phys. Rev. Lett. 99,

120601 (2007) for details.)

An improvement (“TNR”)
pushes it even up to 10 digits. [Evenbly and Vidal, Physical Review Letters

115, 180405 (2015)]
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How we can compute other quantities

From the method described so far, we can obtain F,E, S and C. What
about the magnetization, M , χ, and the Binder ratio?

Define “impurity tensors”,

T (0) ≡ T, T (n) ≡ 0 (n > 1)

T
(1)
S1S2S3S4

≡ TS1S2S3S4 ×m(S1, S2, S3, S4)

where m = (S1 + S2 + S3 + S4)/2 .

Define “renormalized impurity tensors”:

T ′(n) ≡
∑

n1n2n3n4
(
∑

k nk=n)

Cont(T (n1)T (n2)T (n3)

×T (n4) × (triangle tensors))

At the end of all iterations,
⟨Mn⟩ =

∑
S1S2

T
(n)
S1S2S1S2

/
∑
S1S2

T
(0)
S1S2S1S2
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Application of TNRG to q-state Potts model (1)

q-state Potts model in 2D.
[S. Morita and N.K., Computational
Physics Communications, 236 65-71
(2019).]

n-th moments of magnetization are
computed (e.g., magnetization
(n = 1), susceptibility (n = 2),
Binder ratio (n = 4), etc)

The result of 20 RG iterations (i.e.,
L = 220 ≈ 106) was obtaind for
q = 2, 3, · · · , 7 for the truncation
dimension (‘bond-dimension’)
χ = 48.
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Application of TNRG to q-state Potts model (2)

According to the finite-size scaling
(FSS), which we will discuss later, the
Binder ratio is defined as U4 ≡
⟨M4⟩/⟨M2⟩2 depends on T and L as(

dU4

dT

)
T=Tc

=
1

ν
logL+a+bL−ω+· · ·

For first-order transitions, 1/ν = d is
expected.

The 1st order nature of the transition of
5-state Potts model has been
confirmed. (CF: ξ ≈ 2500 at Tc).

[S. Morita and N.K., Comp. Phys.

Comm. 236, 65-71 (2019).]
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Superoperator and its linearization

The linearized RGT can be expressed in terms of the T ∗ itself and the
projection operators as follows. The scaling dimensions can be obtained by
diagonalizing this operator as in the standard prescription of general RG.

The diagram means

δA′ = RδA

By diagonalizing R,

φ′
µ = λµφµ

λµ = 2xµ

The linearized TRG. The shaded half circles are the projection operators reducing the dimensions

of indices. (Not discussed in the lecture.) The half circles and the triangles are computed for,

A∗, the fixed point tensor (T ∗ in this lecture note). While there are four terms on the right

hand side, only one is shown explicitly. For more details, see [Lyu et al, PRR 3 023048 (2021)].
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Scaling dimensions as eigenvalues of linearized RGT

[Lyu et al, PRR 3 023048 (2021)]

The scaling dimensions of the 2D
Ising model from the canonical
RG prescription using the
proposed HOTRG-like scheme
with χ = 30, ϵgilt = 6× 10−6.
Dashed lines are the exact values.

∗ To obtain results like the ones in the figure, we need a little more tips and techniques than

explained above. For details, see the original paper. In addition, for two dimensional cases,

CFT-aided methods are available and produce even more accurate results.
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Summary

Tensor-network RG (TNRG) is a scheme that realizes “data
compression” at every length scale (by the low-rank approximation
of the identity matrix).

With TNRG, we can systematically improve the real-space RG by
adjusting the compression level, i.e., by increasing the cut-off
dimension χ (often called “bond-dimension”).

TNRG provides us with rather accurate estimates of various quantities
and critical indices.

We have seen one particular implementation of TNRG, which is called
HOTRG. There are many other proposals for realizing TNRG, such as
MERA, TRG, TNR, loop-TNR, etc. (See Tao Xiang, “Density matrix
and tensor network renormalization”, Cambridge 2023)
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Appendices
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A better rank-reducer (with no reflection symmetry)

For the cost function, instead of the sub-network with only 2 tensors,
we may consider 4 tensor sub-network. In that case, the cost function
is

Let us regard A and B as χ4 × χ2 matrices and the rank-reducer X
as a χ2 × χ2 matrix whose rank is χ (or less).

Low-rank approximation problem

Suppose 3 integers, l,m, n, that satisfy l < m < n. For two given n×m
matrices A and B, find a rank-l, m×m matrix X that minimizes

C(X) ≡ |ABT −AXBT|2. (1)
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Solution to LRA problem I
We want the rank-l matrix X
minimize

C ≡ |ABT −AXBT|2. (2)

By the QR-decomposition,
A = QARA, B = QBRB with QX

and RX the relevant parts of
orthogonal and upper triangle
matrices, respectively,

C ≡ |RAR
T
B −RAXRT

B|2 (3)

Consider SVD: RAR
T
B = UΛV T.

If X satisfies

RAXRT
B = Û Λ̂V̂ T, (4)

it is optimal. (See supplement)
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Solution to LRA problem II

Now, let us define“triangle
operators,” PA and PB, by

PA ≡ RT
BV̂ Λ̂− 1

2 ,

PB ≡ RT
AÛ Λ̂− 1

2

Then, because RAR
T
B = UΛV T,

RAPA = Û Λ̂
1
2 ,

RBPB = V̂ Λ̂
1
2 .

Therefore, X ≡ PAP
T
B , satisfies (4),

RAXRT
B = Û Λ̂V̂ T, so it yields the

optimal value of (3). This means
that we can take PA and PB as
“triangle operators”.
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Summary of the TNRG procedure (no reflection symmetry)

1 QR-decompose A and B matrices.

A = QARA, B = QBRB

2 SVD. RAR
T
B = UΛV T

3 Compute the “triangle operators”.

PA ≡ RT
BV̂ Λ̂− 1

2 ,

PB ≡ RT
AÛ Λ̂− 1

2

4 Do the same for other d− 1 directions.∗

5 Contract the cluster of bd original operators
together with the 2d triangle operators and
obtain the new element tensor T ′.

6 Repeat these till the desired system size has
been reached.

∗ Computationally, it is less expensive to bunch up one direction first before computing the

triangular operators in the other directions.
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Reflection symmetry in TN language

Even if each component tensor is reflection symmetric (left), a cluster
of them is not in general (right).

⇒

The example above suggests us to generalize the gauge symmetry by
including the gauge operator g that satisfies g2 = 1 as its part, so that
the symmetry of the component tensor carries over to the composite:

⇒
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Horizontal reflection symmetry

If each component tensor is horizontally reflection symmetric, so is the
renormalized tensor.
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Vertical reflection and choice of isometry

The vertical reflection symmetry is trickier because we need to impose an
additional condition on the isometry U that it also diagonalizes the gauge
operator, which can be done as follows:
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