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In this lecture, we see ...

Having seen a few examples of the simple real-space RG
transformations, in this lecture we formulate it as a general framework
for discussing the phase diagram and the critical phenomena.

As a results, we see that the critical phenomena is characterized by
the fixed point of the RGT. In particular, the eigenvalues of the
linearized transformation around the fixed point.

The critical exponents, such as η, ν, β, can be expressed as some
simple combinations of scaling eigenvalues.

As an exactly-treatable example of the RG framework, we consider
the Gaussian model, which is easy to solve and provides us the
starting point for perturbative renormalization group.
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Fixed-point and scaling operators

We consider a generic Hamiltonian H(S|K) with (generally) many
parameters K = (K1,K2, · · · ).

Suppose we have its exact renormalization group transformation
(RGT), represented by the change in the parameters, i.e.,
K → K′ ≡ Rb(K). (Even if we cannot actually compute it, we can
still make some statements.)

The function Rb(K) defines a “RG flow” in the parameter space, i.e.,
the set of trajectories in K space along which K moves as we
repeatedly apply the RGT. (Roughly speaking, this corresponds to
how the appearance of the system changes as it moves farther away
from the observer.)

This RG flow provides us with a framework of understanding the
phase diagram.
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Generic Hamiltonian

Any Hamiltonian is expressed as an expansion w.r.t. local operators.

Ha(S|K, L) = −
∑
x

∑
α

KαSα(x) (1)

where {Sα} spans the space of all local operators, i.e.,

∀Q(x) ∃qα

(
Q(x) =

∑
α

qαSα(x)

)
(2)

Example: A generic model defined with Ising spins.

K1 = H S1(x) = Sx

K2 = Jx S2(x) = Sx Sx+ax

K3 = Jy S3(x) = Sx Sx+ay

K4 = Q S4(x) = Sx Sx+ax Sx+2ax

K5 = Q S5(x) = Sx Sx+ax Sx+ay

...
... (ax,ay, · · · : lattice unit vectors)
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RG flow diagram
The RGT

Ha(S,K) → Ha(S
′,K ′)

can be regarded as a map from
the parameter space onto itself

K → K ′ ≡ Rb(K)

An RG trajectory can be defined as an RGT-invariant curve. such
that Rb1Rb2 = Rb1b2 .)

A trajectry converging to the unstable fixed point (FC) is called a
critical line (LC). The parameter along it is called irrelevant (uw).

The parameter along a trajectry emanating from the unstable fixed
point is called relevant. (ut).
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Critical properties are controlled by unstable fixed-point

The system we consider is the “real
world” (the t-axis) with non-zero
irrelevant field (uw), whereas the
fixed point (Fc) lies in the “ideal
world” (the ut-axis) with no
irrelevant field (uw = 0).

Focusing on the narrower window including the transition point on the
t-line allows us to apply the RG maps more times before we get out of the
critical region (or more precisely, the region in which the linear
approximation around the fixed point is good). Applying the RG maps
more times reduces the irrelevent field, getting us closer to the ut line.
Therefore, we can observe purer critical behavior as we approach the
critical point.
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Expansion around unstable fixed point

Consider the “local” Hamiltonian at x, Ha(S(x)|K,x), with S(x)
being the subset of S near x. Its fixed point form is

H∗
a(S(x),x) ≡ Ha(S(x)|K∗,x). (3)

(In what follows, we focus on the local Hamiltonian, dropping some or all of the

parameters, a,x and S(x), and use the abbreviation like H∗ for H∗
a(S(x)|K,x).)

Let us denote the RGT symbolically by Rb where b is the
renormalization factor. Then, Rb(H

∗) = H∗ .

Let us expand the local Hamiltonian around this fixed point.

H = H∗ −
∑
α

hαSα = H∗ − h · S (4)

where hα ≡ Kα −K∗
α
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Linearization of RGT

Now, consider the transformation applied to the local Hamiltonian
near the fixed point:

Rb(H
∗ − h · S) = H∗ − h′ · S′

To the lowest order, h′ depends linearly on h, because h = 0 maps to
h′ = 0. Therefore, a linear operator Tb exists such that

h′ ≈ Tbh.

We assume that Tb is diagonalizable with real eigenvalues.(∗)

P−1TbP =

 λ1

λ2

. . .

 ≡ Λb

(∗) Here we should remember that the initial physical variables, S, and the final, S′, are

different. So, in some cases, the phases of the eigenvalues may be gauged away by redefining

S′, i.e., if Tb is “rotating”, we can rotate S′, while S is fixed, so that Tb’s eigenvalues are real.
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Scaling fields and scaling operators

By defining

u ≡ P−1h, and φ ≡ PTS

we obtain

u ·φ = (P−1h)T(PTS) = hT(P−1)TPTS = h · S.

In addition, u transforms as

u′ = P−1h′ = P−1Tbh = P−1TbPu = Λbu,

namely, u′µ = byµuµ with yµ ≡ logb λµ.

uµ = “scaling field”, φµ = “scaling operator”,

yµ = “scaling eigenvalue”

(
yµ > 0 → uµ is relevant
yµ < 0 → uµ is irrelevant

)
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Scaling dimensions

In terms of the scaling fields and operators, the local Hamiltonian
H(ϕ,u) = H∗(ϕ)− u ·φ is mapped by RGT to

H ′(ϕ′,u′) = H∗(ϕ′)−
∑
µ

u′µφ
′
µ (u′µ = byµuµ).

The scaling property of ϕµ is determined by yµ through the condition∑
x∈Ωb(bx′)

uµ(x)φµ(x) ≈ u′µ(x
′)φ′

µ(x
′) (5)

with the box Ωb(bx
′) of size b at bx′. This yields

φ′
µ(x

′) ≈ bxµφµ(x) with xµ = d− yµ (See supplement)

xµ ≡ d− yµ = “scaling dimension” of ϕµ.
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Supplement: More about scaling dimensions I

The relation xµ = d− yµ derived in the previous page relies on (5). But, it’s
justification is not very clear. To make it clearer, consider the free energy:

F = − log
∑
S

e−H(S|K) = − log
∑
S

e···+ad ∑
x u(x)φ(x)+···

(Here we have dropped the subscript µ of uµ and φµ.) The free energy is
invariant under the RG transformation apart from the additive constant.

F = − log
∑
S′

∑
S

δS′,Σ(S)e
−H(S′|K′) = Fsh − log

∑
S′

e−H(S′|K′)

= Fsh − log
∑
S′

e···+ad ∑
x′ u

′(x)φ′(x)+···

The two-point correlation function is the functional derivative:

⟨φ(x)φ(y)⟩H(φ,u) = − ∂2F

∂u(x)∂u(y)
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Supplement: More about scaling dimensions II

≈ ∂2

∂u(x)∂u(y)
log
∑
S′

e···+ad ∑
x′ u

′(x′)φ′(x′)+···

≈ ∂2

∂u(x)∂u(y)
log
∑
S′

e···+ad ∑
x b−du′(x/b)φ′(x/b)+···

(
∵
∑
x′

≈ b−d
∑
x

)

)

=
∂2

∂u(x)∂u(y)
log
∑
S′

e···+ad ∑
x by−du(x)φ′(x/b)+··· (∵ u′(x/b) = byu(x))

= b−2(d−y)⟨φ′(x/b)φ′(y/b)⟩H(φ′,u′)

⇒ ⟨φ′(x′)φ′(y′)⟩H(φ′,u′) = b2x⟨φ(x)φ(y)⟩H(φ,u) (x ≡ d− y)

We can express (symbolically) the last equation as

φ′(x′) = bxφ(x). (x ≡ d− y)
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Scaling form of correlation functions

For correlation function in the long-length scale, we have

Gµ(|x′ − y′|,u′) = ⟨φ′
µ(x

′)φ′
µ(y

′)⟩H(φ′,u′)

≈ b2xµ⟨φµ(x)φµ(y)⟩H(φ,u) = b2xµGµ(|x− y|,u),

which means Gµ(r,u) ≈
1

b2xµ
Gµ

(r
b
,u′
)

We will focus on long-range behaviors, which allows us to start from a
Hamiltonian which might be obtained after a RGT with a scaling
factor so large that all irrelevant fields already have vanished. Also,
we consider the case with only one non-zero relevant field, say t:

Gµ(r, t) ≈
1

b2xµ
Gµ

(r
b
, bytt

)
.

By choosing b = r/c with some constant c, we obtain

Gµ(r, t) ≈
1

r2xµ
G̃µ (r

ytt)
(
G̃µ(s) ≡ c2xµGµ(c, s/c

yt)
)
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Critical exponents ν and η

Let us see what we can deduce from the scaling form

Gµ(r, t) ≈
1

r2xµ
G̃µ (tr

yt) =
1

r2xµ
G̃µ

(( r

t−1/yt

)yt)
(6)

First, by comparing it with the defining equation of the correlation
length, Gµ(r, t) ∼ r−ωe−r/ξ(t) , we see

ξ(t) ∝ t
− 1

yt ⇒ ν =
1

yt
.

Second, by taking the limit t → 0 in (6),

Gµ(r, t = 0) ≈ 1

r2xµ
G̃µ(0) (7)

which means (because of the definition of ηµ)

d− 2 + ηµ = 2xµ
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Order parameters and critical exponent β

Consider the expectation value of a scaling field φµ,

mµ(u) ≡ ⟨φµ(x)⟩u ≈ ⟨b−xµφ′
µ(x

′)⟩u′ = b−xµmµ(u
′).

It follows that mµ(0) = 0 if xµ > 0, which we assume below.

Suppose that spontaneous magnetization, though our discussion
extends to other quantities, exists (i.e., ⟨φµ⟩ > 0) slightly away from
the critical point.

mµ(|t|) ≈ b−xµmµ(b
yt |t|).

By choosing b = |t/t0|−1/yt , with t0 being any constant, we obtain

mµ(t) ∝ t
xµ
yt ,

Thus, the critical exponent βµ is related to the scaling dimensions:

βµ =
xµ
yt

.
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Gaussian model and Gaussian fixed point

Consider the Gaussian model:

Ha(ϕ|ρ, t) ≡
∫ L

a
ddx

(
ρ(∇ϕx)

2 + tϕ2
x − hϕx

)
=

∫ π/a

π/L

ddk

(2π)d
(ρk2 + t)ϕ2

k − hϕ0.

(∗ The lower-bound of the integrals symbolically specifies the short-range cutoff.)

We will apply the generic RG transformation:

(1) Partial Trace: Ha(ϕ|ρ, t, h) → Hba(ϕ̃|ρ̃, t̃, h̃)

(2) Rescaling: Hba(ϕ̃|ρ̃, t̃, h̃) → Ha(ϕ
′|ρ′, t′, h′)
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Partial trace of short-range fluctuation

(Partial trace) Ha(ϕ|ρ, t, h) → Hab(ϕ̃|ρ̃, t̃, h̃)

Since each wave-number component is independent from the others,
the summation over ϕk for |k| > π/2a results simply in a
multiplicative constant:

e−Hba(ϕ̃|ρ̃,t̃,h̃) ≡
∫

d{ϕk}|k|> π
ba
e
−

∫ π/a
π/L

ddk

(2π)d
(ρk2+t)ϕ2

k+hϕ0

∼ e
−

∫ π/ba
π/L

ddk

(2π)d
(ρk2+t)ϕ2

k+hϕ0
,

or Hba(ϕ̃|ρ̃, t̃) =
∫ π/ba

π/L

ddk

(2π)d
(
ρk2 + t

)
ϕ2
k − hϕ0.

In short, the partial trace in the present case amounts to

ϕ̃k =

{
ϕk

(
for |k| < π

ba

)
undefined

(
for |k| > π

ba

) , (ρ̃, t̃, h̃) = (ρ, t, h).
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Rescaling

(Rescaling) Hba(ϕ̃|ρ̃, t̃) → Ha(ϕ
′|ρ′, t′)

(
k′ ≡ bk, ϕ′

k′ = b−ωϕ̃k

)
Ha(ϕ

′|ρ′, t′, h′) =
∫ π/a

bπ/L

ddk′

(2π)d
b−d

(
ρb−2k′

2
+ t
)
b2ωϕ′

k′
2 − hϕ0

=

∫ π/a

bπ/L

ddk′

(2π)d
b−(d+2)+2ω

(
ρk′2 + b2t

)
ϕ′
k′

2 − bωhϕ′
0

The exponent ω must be d+2
2 to make ρ unchanged by RGT. Then,

Ha(ϕ
′|ρ′, t′, h′) =

∫ π/a

bπ/L

ddk′

(2π)d

(
ρk′

2
+ t′

)
ϕ′
k′

2 − h′ϕ′
0

with t′ ≡ b2t, and h′ ≡ byhh. (yh = ω = (d+ 2)/2)∗

yt = 2 and yh = d+2
2 (Gaussian model)

∗ This means ϕ′
k′ = b−yϕk. This is consistent with ϕ′

x′ = bxϕx, as we see later.
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Summary of RGT of Gaussian model

By RG transformation,

Ha(ϕ|ρ, t, h) =
∫ π/a

bπ/L

ddk

(2π)d
(
ρk2 + t

)
ϕk′2 − hϕ0

is transformed into

Ha(ϕ
′|ρ′, t′, h′) =

∫ π/a

bπ/L

ddk′

(2π)d

(
ρ′k′

2
+ t′

)
ϕ′
k′

2 − h′ϕ′
0

with

k′ = bk, ϕ′
k′ = b−yhϕk, ρ′ = ρ, t′ = bytt, h′ = byhh (8)

with

yt ≡ 2 and yh ≡ d+ 2

2
. (9)
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RGT on ϕx

We saw xµ = d− yµ in general, its direct derivation in the case of
Gaussian model clarifies the meaning of RGT.

Considering the Fourier components of ϕ′
x′ ,

ϕ′
x′ = L′−d

π/a∑
k′

eik
′x′

ϕ′
k′ = bdL−d

π/ab∑
k

eikxb−yϕk

= bd−yL−d

π/ab∑
k

eikxϕk = bx[ϕx]k< π
ab

Here, [ϕx]k<k∗ ≡ L−d
k∗∑
k

eikxϕk is something one obtains after

filtering out the short wave-length components (k > k∗) from ϕx.
Therefore, ϕx and [ϕx]k<k∗ are identical in long-range behaviors.
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ν and η of Gaussian model

In general,

ν = 1/yt, d− 2 + ηµ = 2xµ

For the Gaussian model, we have derived

yt = 2 and yh =
d+ 2

2

(
xh =

d− 2

2

)
Therefore, for the Gaussian model

ν =
1

2
and η = 0.

The same as the mean-field results. Previously we saw the MF cannot be
self-consistent in d < 4, which suggests that the Gaussian fixed point does
not characterize the ϕ4 model in d < 4, while it may in d > 4.
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Exercise 7.1: Show that the critical exponent γµ that describes the
temperature-dependence of the susceptibility, χµ ≡ ∂⟨φµ(x)⟩/∂uµ
∝ t−γµ , where φµ(x) is a scaling operator, is related to the scaling

dimensions/eigenvalues as γµ =
yµ − xµ

yt
=

2yµ − d

yt
.

χ(ut) ∼
∑
y

⟨φµ(x)φµ(y)⟩ =
∑
y

b−2xµ⟨φ′
µ(x/b)φ

′
µ(y/b)⟩

=
∑
y′

bd−2xµ⟨ϕ′
µ(x/b)ϕ

′
µ(y

′)⟩ = b2yµ−dχ(u′
t) ∼ b2yµ−dχ(bytut)

By taking b ∼ u− 1
yt , we obtain χ(u) ∼ u− 2yµ−d

yt , which means γµ =
2yµ − d

yt
.

For example, γh for the Gaussian model is γh =
2yh − d

yt
= 1.
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Exercise 7.2: Consider a system for which the susceptibility χµ diverges
as one approaches the critical point keeping the condition uµ = 0. Does
application of infinitesimal field uµ qualitatively change the critical
properties? Can we say the opposite, i.e., that the field does not
essentially change the nature of the transition whenever χµ < ∞?
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Exercise 7.3: In the rescaling of the Gaussian model, we chose yh so
that the ρ would not change. However, in principle, even if we fix other
parameters in stead of ρ, we should be able to obtain some other RGT
and the corresponding fixed point. What fixed point would we have
obtained, for example, if we fixed t rather than ρ?
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