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In this lecture, we see

The fixed point of the RG transformation is important in
understanding our world.

Real-space renormalization group transformation is generally
impossible to carry out in dimension higher than 1. Therefore, it
requires some approximation.

A decimation-based RG can be approximately done by a method
proposed by Migdal and Kadanoff.

Generally, the fixed point of RG transformation (RGT) represents the
critical point.

MKRG produces a non-trivial evaluates of critical exponents.

However, they do not generally agree with the correct values, and it is
not obvious how to systematically improve the approximation.
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1D was easy. Can we do the same in 2D case?
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RG is trickier for d > 1

Consider, for example, coarse-graining by decimation.

S̃x ≡ Sx for x ∈ Ω′ ≡ {(2ma, 2na)|m,n = 0, 1, 2, · · · , L/2}

The partial trace can be taken (at least formally) as

e−H̃2a(S̃,K̃) ≡ Tr
{Sx}x∈Ω\Ω′

e−Ha(S,K)

There are paths that connect two remaining spins, say Sr and Sr′

(r, r′ ∈ Ω′), through Ω\Ω′. Tracing out the spins along the path give
rise to the long-range interaction between Sr and Sr′ .

There are n-body (n > 2) interactions among the remaining spins,
because, for example,

∑
S0
(1 + tS0S1)(1 + tS0S2)(1 + tS0S3)

(1 + tS0S4) contains the term like t4S1S2S3S4.

As a result, unlike the 1D case, the renormalized Hamiltonian is too
complicated to deal with.
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d > 1 needs approximation

In 1D, the RG map transforms the simple Hamiltonian with only 2
parameters, the magnetic field H and the nearest neighbor interaction K,
H ≡ −H

∑
i Si −K

∑
(ij) SiSj into

H′ ≡ −H ′
∑
i

S′
i −K ′

∑
(ij)

S′
iS

′
j ,

the exact same form with modified coupling constants K ′ and H ′.

However, in 2D, the original simple Hamiltonian would be transformed into

H′ = −
∑
i

H ′S′
i −

∑
ij

K ′
ijS

′
iS

′
j −

∑
ijk

K ′′
ijkS

′
iS

′
jS

′
k − · · ·

We can carry out the RG mapping only approximately.
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Migdal-Kadanoff RG for 2D Ising model

1 Bunch up two vertical lines.

2 Partial trace of spins (×) on horizontal bonds. ( 1○: th K̃ = th2K)

3 Bunch up two horizontal lines. ( 2○: K ′ = 2K̃)

4 Partial trace of intermediate spins (×) on vertical bonds.

5 Trivial re-scaling (just replace r′ by r′/b and do nothing on K ′).

simple Migdal-Kadanoff

t′ = th(2 ath(t2))

(
=

2t2

1 + t4

)
(t ≡ thK, t′ ≡ thK ′)
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Effect of RGT on correlation function

Consider a RG transformation with scaling factor b

t′ = Rb(t),

e.g., R2(t) = th(2 ath(t2)) for MKRG.

Obviously, the correlation length of the renormalized system ξ′ should
be equal to ξ/b. At the same time, ξ and ξ′ are the values of the
same function at different arguments, i.e., ξ = ξ(t) and ξ′ = ξ(t′).
Therefore, the correlation as a function of the coupling constant must
satisfy

ξ(t′) = b−1ξ(t). (1)
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RG fixed point and yt = 1/ν

The RG fixed-point tc is defined by tc = Rb(tc).

The RGT amplifies the ‘deviation’ from the fixed-point as

δt → δt′ = t′ − tc = Rb(tc + δt)− tc ≈ R′
b(tc)δt

Therefore, (1) means ξ(tc +R′
bδt) ≈ b−1ξ(tc + δt).

Since the exponent ν is defined by ξ ∝ (δt)−ν ,

(R′
bδt)

−ν = b−1(δt)−ν → R′
b
−ν

= b−1

→ yt ≡
1

ν
=

logR′
b(tc)

log b
(2)

Derivatives of RG transformation are critical exponents.
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RG fixed point and yt = 1/ν (numerical estimates)

For the Migdal-Kadanoff RGT for 2D Ising model, we have

tc = R2(tc) =
2t2c

1 + t4c
→ tc = 0.54368 · · ·

(cf: texactc =
√
2− 1 = 0.4142 · · · )

With some arithmetic, we can get

R′
2(tc) =

2(1− tc)

tc
≈ 1.676

→ yt ≡ 1/ν ≈ log 1.676/ log 2 ≈ 0.747

(cf: yexactt = 1, ymean field
t = 2)

Not bad, but ad-hoc (not obvious how to improve).
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Infinitesimal MKRG

The MKRG mapping with the scaling factor b can be summarized as

t′ = R2(t) ≡ th(2 ath(t2)).

This can be generalized formally to general integer b > 1 as

t′ = Rb(t) ≡ th(b ath(tb)).

Although the corresponding operation cannot be defined for
non-integer b, let us assume that it is still meaningful.

After all, “bunching-up” two lines to one by one step might be too
crude. It may become less harmful if we bunch-up as small number of
lines as possible, i.e., taking b = 1 + λ where 0 < λ ≪ 1

Does this infinitesimal RG still yield sensible results?
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Infinitesimal RG (general argument)

In general, suppose some RG transformation t′ = Rb(t) with
continuous scaling factor b = 1 + λ.

Using the notation ḟ ≡ ∂f/∂b, the critical point is determined by

tc = R1+λ(tc) = R1(tc) + λṘ1(tc) ⇒ Ṙ1(tc) = 0.

(Ṙ1(t) is called “beta function” and the symbol β(t) is often used.)

Using R1(t) = t (therefore R′
1(t) = 1, and R′′

1(t) = 0), in the lowest
order in λ, the scaling dimension yt can be obtained by

yt(1 + λ) =
log

(
R′

1+λ(tc(1 + λ))
)

log(1 + λ)
(See Eq.(2))

≈ 1

λ
log

(
R′

1(tc(1)) +R′′
1(tc(1))∆tc + Ṙ′

1(tc(1))λ
)
≈ Ṙ′

1(tc(1)).

Ṙ1(tc) = 0 and yt = Ṙ′
1(tc)
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Infinitesimal MKRG (numerical estimates)

For b = 1 + λ (λ ≪ 1), defining t ≡ thK, we obtain

t′ = Rb(t) = th(b ath tb) ≈ t+ λṘ1(t)

Ṙ1(t) ≡
∂Rb(t)

∂b

∣∣∣∣
b→1

= (1− t2) ath t+ t log t

The critical point t = tc is determined by Ṙ1(tc) = 0, which yields

tc =
√
2− 1 (Exactly agrees with the correct value!)

As for yt, we have

yt = Ṙ′
1(tc) = 2 +

√
2 log(

√
2− 1) = 0.753549 · · · ,

slightly closer to yexactt = 1 than the simple MKRG with b = 2.

Better, but still ad-hoc (not obvious how to further improve).
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General renormalization group (RG) transformation

In the derivation of the Ginzburg criterion, we introduced the
coarse-graining transformation as a Gedankenexperiment.

The RG transformation consists of two steps: (i) coarse-graining and
(ii) rescaling. Schematically,

Ha(S |K, L)
(i)
−−→ Hab(S̃ |K̃, L)

(ii)
−−→ Ha(S

′ |K ′, b−1L)
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General Renormalization Group Transformation

In the coarse-graining step, we define coarse-grained field and carry
out the configuration-space summation of the partition function, with
the constraint imposed by the coarse-grained fields.

In the rescaling step, we redefine the length-scale and the field
variables by multiplying them with scaling factors so that the effective
Hamiltonian may be the same form as the original one.
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Critical point is scale-invariant

“https://youtu.be/fi-g2ET97W8” by Douglas Ashton

Statistical Mechanics I: Lecture 6 May 26 & June 2, 2025 15 / 17

Coarse-graining flow

“https://youtu.be/MxRddFrEnPc” by Douglas Ashton

“Critical point” = “Fixed point of RG transformation”
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https://www.youtube.com/embed/fi-g2ET97W8
https://www.youtube.com/embed/MxRddFrEnPc


Exercise 6.1: Try the idea of MKRG (i.e., bunching up and trace over
intermediate spins) on the Ising model in higher dimensions (d > 2).
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