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In this lecture, we see

@ The fixed point of the RG transformation is important in
understanding our world.

@ Real-space renormalization group transformation is generally
impossible to carry out in dimension higher than 1. Therefore, it
requires some approximation.

@ A decimation-based RG can be approximately done by a method
proposed by Migdal and Kadanoff.

@ Generally, the fixed point of RG transformation (RGT) represents the
critical point.

@ MKRG produces a non-trivial evaluates of critical exponents.

@ However, they do not generally agree with the correct values, and it is
not obvious how to systematically improve the approximation.
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1D was easy. Can we do the same in 2D case?
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RG

Is trickier for d > 1

Consider, for example, coarse-graining by decimation.

Sg =Sz forx € Q' ={(2ma,2na)lm,n=0,1,2,--- | L/2}

The partial trace can be taken (at least formally) as
e H2a(SK) =  mp o Ha(SK)
{Sz}toco\o/

There are paths that connect two remaining spins, say S, and S,
(r,r" € ), through Q\'. Tracing out the spins along the path give
rise to the long-range interaction between S,. and S, .

There are n-body (n > 2) interactions among the remaining spins,
because, for example, > (1 +1S051)(1 + 5052)(1 + ¢50.S3)

(1 +1SSy) contains the term like t451.55535..

As a result, unlike the 1D case, the renormalized Hamiltonian is too
complicated to deal with.

Statistical Mechanics |: Lecture 6 May 26 & June 2, 2025 4 /17



d > 1 needs approximation

In 1D, the RG map transforms the simple Hamiltonian with only 2
parameters, the magnetic field H and the nearest neighbor interaction K,

H=-H) S—K> S
i (i)

the exact same form with modified coupling constants K’ and H’.

However, in 2D, the original simple Hamiltonian would be transformed into

H = =D H'S;=) KiSiS;— ) KiuSi%Si—-
1 1)

ijk

We can carry out the RG mapping only approximately.
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Migdal-Kadanoff RG for 2D Ising model

I'a) e ~ s
K . K v =
: @
. QE,% - . jﬂ

© Bunch up two vertical lines.
@ Partial trace of spins (x) on horizontal bonds. ((D: th K = th? K)
@ Bunch up two horizontal lines. (2): K’ = 2K)

© Partial trace of intermediate spins (x) on vertical bonds.

@ Trivial re-scaling (just replace r’ by r'/b and do nothing on K’).

simple Migdal-Kadanoff

212
1+ ¢4
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t' = th(2ath(t?)) <: ) (t=thK, t' =thK’)




Effect of RGT on correlation function

@ Consider a RG transformation with scaling factor b
t' = Ry(1),
e.g., Ro(t) = th(2ath(t?)) for MKRG.

@ Obviously, the correlation length of the renormalized system &’ should
be equal to £/b. At the same time, £ and & are the values of the
same function at different arguments, i.e., £ = £(¢) and & = £(¢).
Therefore, the correlation as a function of the coupling constant must
satisfy

E(t) = b7IE(t). (1)
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RG fixed point and y; = 1/v
@ The RG fixed-point t. is defined by t. = Ry(t.).
@ The RGT amplifies the ‘deviation’ from the fixed-point as

6t — 0t =t —t. = Ry(te + 0t) — to ~ Ry(t.)ot

o Therefore, (1) means &(t. + R0t) ~ b~ *&(te + 6t).
@ Since the exponent v is defined by £ o (§t)77,

(Rpot) ™ =b"H6t)™ — Ry "=0b"

~ 1 log Ry (te)
=T T osh

Derivatives of RG transformation are critical exponents.
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(2)




RG fixed point and y; = 1/v (numerical estimates)

@ For the Migdal-Kadanoff RGT for 2D Ising model, we have

212
tc = RQ(tc) — 1 +Ct4
C

(cf: &%t = /2 — 1 =0.4142---)

— 1. =0.54368 - - -

@ With some arithmetic, we can get

2(1 — t.)

— yr =1/v =~ log1.676/log2 ~ 0.747

Ry(te) = ~ 1.676

(Cf: yfxact =1, yinean field _ 2)

Not bad, but ad-hoc (not obvious how to improve).
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Infinitesimal MKRG

@ The MKRG mapping with the scaling factor b can be summarized as
t' = Ry(t) = th(2ath(t?)).

@ This can be generalized formally to general integer b > 1 as
t' = Ry(t) = th(bath(t®)).

Although the corresponding operation cannot be defined for
non-integer b, let us assume that it is still meaningful.

o After all, "bunching-up” two lines to one by one step might be too
crude. It may become less harmful if we bunch-up as small number of
lines as possible, i.e., taking b=14+ A where 0 < A < 1

Does this infinitesimal RG still yield sensible results?
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Infinitesimal RG (general argument)

@ In general, suppose some RG transformation ¢ = Ry (t) with
continuous scaling factor b =1+ A.

o Using the notation f = Jf/0b, the critical point is determined by
te = Ripa(te) = Ri(te) + AR1(t.) = Ri(t.) = 0.
(R1(t) is called “beta function” and the symbol §(t) is often used.)

e Using R;(t) =t (therefore R} (t) =1, and R{(t) = 0), in the lowest
order in A, the scaling dimension y; can be obtained by

log (R, ,(t:(1+ X))
log(1+ \)

~ %log (R’l(tc(l)) + R (tc(1))At. + R’l(tc(l))A) ~ Rj(t(1)).

yr(1+A) = (See Eq.(2))
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Infinitesimal MKRG (numerical estimates)

@ Forb=1+ X (A < 1), defining ¢t = th K, we obtain

t' = Ry(t) = th(batht®) ~ t + ARy ()
ORy(t)

5% = (1 —t*)atht +tlogt

b—1

}%1(t)

@ The critical point t = t. is determined by R;(t.) = 0, which yields
te=+2—1 (Exactly agrees with the correct value!)

@ As for y;, we have
ys = Ry(te) = 2+ V2log(vV2 — 1) = 0.753549 - - -

slightly closer to y$*2°* = 1 than the simple MKRG with b = 2.

Better, but still ad-hoc (not obvious how to further improve).
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General renormalization group (RG) transformation

s

o
e = a
A D L 4 =
e Yeseafing

@ In the derivation of the Ginzburg criterion, we introduced the
coarse-graining transformation as a Gedankenexperiment.

@ The RG transformation consists of two steps: (i) coarse-graining and
(i) rescaling. Schematically,

Ho.(S| K, L) Q Hoo(S| K, L) ﬂ Ho(S'|K',b71L)
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General Renormalization Group Transformation

s

)
== Da el a -
e Y@scaling

@ In the coarse-graining step, we define coarse-grained field and carry
out the configuration-space summation of the partition function, with

the constraint imposed by the coarse-grained fields.

@ In the rescaling step, we redefine the length-scale and the field
variables by multiplying them with scaling factors so that the effective
Hamiltonian may be the same form as the original one.
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Critical point is scale-invariant

“https: / /youtu.be/fi-g2ET97W8" by Douglas Ashton

Statistical Mechanics |: Lecture 6 May 26 & June 2, 2025 15 / 17

Coarse-graining flow

Ie=10.9941 2 =Kz T =1.003 Tt
b =170 L =131072 b=32 L =32014 b =170 L =131072

“https://youtu.be/MxRddFrEnPc” by Douglas Ashton

“Critical point” = “Fixed point of RG transformation”
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https://www.youtube.com/embed/fi-g2ET97W8
https://www.youtube.com/embed/MxRddFrEnPc

Exercise 6.1: Try the idea of MKRG (i.e., bunching up and trace over
intermediate spins) on the Ising model in higher dimensions (d > 2).
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