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In this lecture we see ...

There are cases where we can rely on the mean-field theory even for
the critical behavior. (Ginzburg criterion)

However, in low dimensions including d = 3, the mean-field theory is
not self-consistent concerning the critical phenomena.

We can define the renormalization group (RG) transformation, and if
we can calculate its result, we would be able to discuss the critical
properties of the system.

For 1D Ising model, we can carry out the RG transformation, which
yields correct critical behavior.
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When can MF be valid? — Ginzburg criterion

First, we will elucidate the meaning of the asymptotic validity and
draw a general criterion.

Then, we will check whether the mean-field theory satisfies the
criterion in a self-consistent way.

We will find that it is indeed self-consistent in some cases, but not in
general. (Ginzburg criterion)
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Typically, MF approximation is bad at microscopic scale

The mean-field (MF) description should be valid when the relative
fluctuation is negligible, i.e., |δϕx| ≪ |⟨ϕx⟩|

Very slightly below the critical temperature, T = Tc − δ, (0 < δ ≪ 1),
the spontaneous magnetization is small 0 < |m| ≡ |⟨ϕx⟩| ≪ 1.

On the other hand, the fluctuation |δϕx| ∼ |ϕx −m| is not typically
small. For example, for the Ising model, ϕx = Sx = ±1, which means
|δϕx| ∼ | ± 1−m| ∼ 1 when |m| ≪ 1.
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However, it may be asymptotically good

Though the condition is not usually satisfied at the scale of lattice
constant, a, it may still be correct at some larger length-scales b.

So, instead of ϕx, we consider the average over the cluster of size b,
ϕX ≡ 1

bd

∑
x∈Ωb(X) ϕx such that a ≪ b ≪ ξ (= correlation length).

Suppose that the MF picture is asymptotically correct. It means that,
in some temperature region Tc −∆T < T < Tc,

1 the relative fluctuation |δϕX |/|ϕX | is small, and
2 the mean-field description is valid for long-range behavior of the system

and produces the correct scaling behaviors. Specifically, the order
parameter m has the form m2 ∼ |t− tc|/u ∼ ρ/(uξ2), and the
two-point correlation function at the distance larger than λξ obeys the
Ornstein-Zernike form where λ is some small but finite constant
(0 < λ ≪ 1) independent of the temperature or ξ.
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Self-consistency of mean-field approximation

Now, let us examine whether these conditions can be met simultaneously.

For ⟨ϕX⟩, below Tc, we have ⟨ϕX⟩2MF ∼ m2 ∼ |∆t|
u

∼ ρ

uξ2

As for the amplitude of the fluctuation, for λ ≪ b/ξ ≪ 1

⟨(δϕX)2⟩MF =
(a
b

)2d ∑
x,x′∈Ωb(X)

⟨δϕx′δϕx⟩ ≲
A(b/ξ)

ρξd−2
(∗ see supplement)

where A(x) is dimensionless and finite for any 0 < x < 1.

It follows that, when d < 4, if we send ξ → ∞ with fixed b/ξ,
⟨δϕ2

X⟩MF/⟨ϕX⟩2MF ∼ A(b/ξ)uρ−2ξ4−d always diverge.

Ginzburg criterion (Upper critical dimension)

At d < 4, the MF approximation to the ϕ4 model cannot be
asymptotically self-consistent. (On the other hand, the validity of the MF description

has been well established by numerical calculation and RG theories for d > 4.)
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Supplement: MF estimate of fluctuation

From the assumption, the correlation function must obey the OZ form.

⟨δϕx+rδϕx⟩ ∼
1

ρ

κ′d−2

(κ′r)
d−1
2

e−κ′|r|, (r > λξ)

(
κ′ =

1

ξ
≈

√
−∆t

)
from which we obtain for b such that λξ ≪ b ≪ ξ,

⟨(δϕX)2⟩ =
(a
b

)2d ∑
x,x′∈Ωb(X)

⟨δϕx′δϕx⟩ ∼
(a
b

)d∑
∆r

ρ−1κ′d−2

(κ′|∆r|)
d−1
2

e−κ′|∆r|

∼ 1

bd

∫ b

0
dr rd−1 ρ

−1κ′d−2

(κ′r)
d−1
2

e−κ′r ∼ 1

bd
1

ρκ′2

∫ κ′b

0
dx x

d−1
2 e−x

∼ f(κ′b)

ρκ′2bd

(
f(x) ∼

{
x

d+1
2 (x ≪ 1)

f∞ (a dimension-less constant) (x ≫ 1)

)

∼ κ′2−d

ρ
× f(κ′b)

(κ′b)d
=

A(b/ξ)

ρξd−2
.

(
A(x) ≡ f(x)

xd

)
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Supplement: MF estimate of fluctuation
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Coarse-graining

In the coarse-graining step of the RG procedure, we first define
“coarse-grained field”, S̃R, which is defined in terms of Sr in the
neighborhood of R, i.e., S̃R = Σ({Sr}r∈Ωb(R)), with some function
Σ(· · · ). More formally,

e−Ha(S|K,L) → e−Hab(S̃|K̃,L) ≡
∑
S

∆(S̃ |Σ(S))e−Ha(S|K,L),

where K is a set of parameters such as K ≡ (β,H).

Example 1 (Ising chain with b = 3)

Σ(S1, S2, S3) = S2 (Simple decimation)

Σ(S1, S2, S3) = (S1 + S2 + S3)/3 (Local Average)

Σ(S1, S2, S3) = sign(S1 + S2 + S3) (Majority rule)
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Example: Coarse-graining of Ising chain (b = 2)

Consider the Ising model of size L ≡ 2g in one dimension.

Ha(S|K, L) = −K

L−1∑
i=0

SiSi+1 − h

L−1∑
i=0

Si (K ≡ (K,h))

For even L, let us adopt the decimation for the coarse-graining:

S̃i = Si (for i = 0, 2, 4, · · · , L− 2)

Then, e−H2a(S̃|K̃,L) =
∑

S1,S3,··· ,SL−1

e−Ha(S|K,L). For h = 0 we have

e−H2a(S̃|K̃,L) =
∑
S1

eK(S0+S2)S1
∑
S3

eK(S2+S4)S3 · · ·
∑
SL−1

eK(SL−2+S0)SL−1

∼ eK̃S0S2eK̃S2S4 · · · eK̃SL−2S0 ∼ e−H2a(S̃|K̃,L) (th K̃ ≡ (thK)2)
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Example: Rescaling of Ising chain (b = 2)

Let us use t ≡ thK instead of K for the parameter. Then, the effect
of the coarse-graining on t is

t̃ = t2.

The rescaling in the present case is simply

r′ ≡ r/2, S′
r′ ≡ S̃r, and t′ ≡ t̃.

Together with the coarse-graining, we obtain the whole RG
transformation,

Ha(S|t, L)
RG−−→
b=2

Ha(S
′|t′, L/2), with t′ = t2.
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Example: Critical exponent ν

From the whole RG procedure, we can deduce

e−r/ξ(t) ∼ ⟨SrS0⟩t = ⟨Sr′S0⟩t′ ∼ e−r′/ξ(t′)

Because r′ = r/2,

ξ(t) = 2ξ(t′)
(
t′ = t2

)
.

Since t′ = t2, if we define g ≡ − log t, the correlation length as a
function of g would satisfy

ξ(g) = 2ξ(2g).

From this, we can obtain ξ(g) upto a constant factor,

ξ(g) ∼ 1

g
⇒ ν = 1 (Exact!)

Statistical Mechanics I: Lecture 5 May 19, 2025 12 / 14



Exercise 5.1: By solving the 1D Ising model, compute the correlation
function G(r) ≡ ⟨SrS0⟩ and the correlation length ξ. Verify ξ ∝ g−1

where g ≡ − log thK. (Hint: The correlation function can be expressed
as

⟨SrS0⟩ = Tr
(
TL−rσT rσ

)/
Tr
(
TL
)

where T is a 2× 2 matrix defined as TS′,S ≡ eKS′S and σ is another

2× 2 matrix defined as σ ≡
(

1 0
0 −1

)
. )

The matrices T and σ can be diagonalized as

T =

(
eK e−K

e−K eK

)
= U

(
2 chK 0

0 2 shK

)
U, σ = U

(
0 1
1 0

)
U,
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where U ≡ 1√
2

(
1 1
1 −1

)
. Therefore, the correlation function, C(r) ≡ ⟨SrS0⟩, of

a periodic system of length L can be computed as

C(r) =
(2 chK)L−r(2 shK)r + (2 shK)L−r(2 chK)r

(2 chK)L + (2 shK)L
=

tr + tL−r

1 + tL

with t ≡ thK. Therefore, in the limit r ≪ L, the correlation function behaves
like C(r) = tr. From this, we obtain e−1/ξ = t, or ξ = 1/ log(1/t) = 1/g.

This is identical to what we obtained from the coarse-graining of the 1D Ising

chain.
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