Lecture 4: Ornstein-Zernike Formula

Naoki KAWASHIMA

ISSP, U. Tokyo

May 8, 2025

Statistical Mechanics |: Lecture 4

In this lecture we see ...

@ The mean-field theory discussed in the previous section does not tell
us about the spatial correlation.

@ In the previous lecture, we derived the continuous version of the Ising
model, i.e., ¢4 model.

@ We can apply the GBF variational approximation to the ¢
Hamiltonian, with the variational Hamiltonian that has a non-trivial

spatial structure.

@ As a result, we obtain the Ornstein-Zernike form for the correlation
function.
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Variational approximation to ¢* model

@ Similar to the Ising model, generally it is impossible to obtain the

exact solution of ¢* model by analytical means. So, we need some
approximation. The simplest variational Hamiltonian with no spatial
correlation results in essentially the same results a the mean-field
approximation to the discrete model. (So, we will not use it.)

We will apply the GBF variational principle by taking the Gaussian
theory as the trial Hamiltonian.

As a result, we will obtain the mean-field evaluation of the spatial
correlation function, which is called Ornstein-Zernike form.
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Switching to the momentum space

Starting from ¢* model in the discrete space,

H=a") (pIVoal’ + 165 +udg — hoa).

by Fourier transformation ¢ = L% Z e'*T . we obtain
k

1 ~
H=—7> (k" +1)|oxf
k

u 7 ~ ~ ~ ~
+ ﬁ Z 62;1;1 k..,0 ¢k’1 Qka ¢k3 ¢k4 — hog.
Fey- ks

(If you prefer continuous wave numbers, you could instead use
H= [ Ak (o + 03 dn +u [ SRR 5 (S, k) dry - by — hdo )
(2m)d 1Y LPk (27m)4d w e k1 ky o -
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Supplement: Convention (Fourier transformation)

In this lecture, we use the following conventions:

Ld
a = (lattice constant), L = (system size), N = — = (# of sites)
a?

L
¢k — / ddm G_ka¢w — ad Z G_ka¢w
O €Xr

. m/a d k 'Lkw —d ikx 7

The tilde ™ is often dropped when there is no fear of confusion.

G(@', @) = (o), Grr=L " b
For translationally and rotationally symmetric case,

G(a',z) = G(|&' —x|), Gri=0r+koGr, G =L o)

GBF variational approximation (1)

Let us consider a trial Hamiltonian with variational parameter €,

Ho = % > erlowl’ (2)
k
— LS 2 n L% 1/2
ZOZ/D¢€ ZE . =14 (@z(;) )
d

L
Since (|¢|*)o = 2 we obtain

1 e, L9 1 N
OZL—%: \Qbk OZZEH=Z§=§ Equipartition

—SozFO—E():—E 2log—:—g log e, (3)
k
(The inverse temperature is included in Fp and Ej. Addltlve constants have been omitted.)
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GBF variational approximation (2)

(H)o = Ldek2+t (lok*)o L3d D 05 k,0(Okey Dy Bres s Y0

ki--ka

Ld Z ,Ok2 -+ t |¢k L3d Z |¢k |¢k’ >0 (WICk)

kK’

We have used (¢rdr)o = Op/—k{|Px|*)0. In terms of
Gr = L™ H|ér|*)o = (2e,) !, we obtain

2
1
Fv=<7{>0—50:;(ﬂk2+t Gk:‘|‘ (ZGk> +§§k:10g€k

Thus we have, f, =L %F, = B+ 3uA?+ m Z log e, (4)

1 1
where A= Td ZGk, and B = Td Z(pk2 +1)Gg
k k

Stationary condition

OF, ) oG 1 6u
— = 6ud = —
0= 3, (k+t+0)a€k—|—2€k <a 6u Ld%j@)
1 1
= (pk?® +t )+ —
(pk” + +a)( 26%)+26k

t
= e =pkP+t+o=pk®+K?) <KJE ;U)

(Since k1 is the correlation length £, as we see later, the critical point is t + o = 0, which

means that the critical point is shifted by o, the contribution from fluctuations {|¢x|%)0.)

Ornstein-Zernike form
1 1 1

Chot ) =
LR L S P T-T.
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Supplement: Wick's theorem

Theorem 1 (Wick)

When the distribution function is Gaussian, any multi-point correlator
factorizes in pairs.

Example 2 (4-point correlator)

Ex: When the Hamiltonian is H = %¢TA¢ with A being a real
positive-definite symmetric matrix,

(D1020304) = (P102)(P304) + (P103)(P204) + (D104) (P203)
= I"ol'3g + I'13l24 +T'14l723

B fpd,e—’H(qﬁ)...
)= [ Depe=H(9)
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Supplement: Proof of Wick's theorem

where ' = A% and (- --

- 1T T : :
If we define == [ D¢e 2® AP+E P the correlation function can be
expressed as its derivatives,

_ =1 0 0 :>|
<¢k1 Py ¢k2p> - <3§k1 8£k2p - £€—0 .

Now notice that = oc e2¢ T¢, with T = A~1, which yields

1+ %&{j Z Z LijLi — SiSitkS
— -

Therefore, the 2p-body correlation becomes

r

EE E “Jl 2292... wip s o
] 2 {klak27“'7k2p}7{zl7]1a125]23'“alpa]p}

1171 1252 ipJp

Ll
—
—

= Zrszm ... T,5, (Summation over all pairings of {k1, -+, kop} )
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Real-space correlation function

1 1

_7—d 2y _ —
G = L]0 >_26k_2(pk2—|—t—|—0)

G(m/ - 33) = <¢az’¢w> - L_2d Z eik’m’eikaz <¢k’¢k>

K.k’

B S _ e
_ 74 Z ik’ ezkmdk/+k,0Gk _ 74 Z e ik(x'—x)
k.k' k

G(m)_/ ddk eikm _1/ ddk eikaz
) @M 2, 2) @m)ipk24t+o

1
26k

(* --- see supplement)
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Mean-field values of v and n

G %(;‘;—;j_rle—m (/@’r'>>1, /%E,/HTU) (T > T)
%7@%2 (T - Tc)
Mean-field value of v
1 1

1
F >T., G _T/g, =5 X ——— = =35
or 1 v (r) x ——=e E=K T MF = 5

Mean-field value of 1

1 1
At T = Tc: G(’r) XX ,rd——Q = I)MF = 0 (G(T) X 'rd_—2+77)

1 , 0.25 ) (d=2)
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{ ( 05 , 0 ) (d>4)
CF: (v,n) =<¢ ( 0.63002(10) , 0.03627(10) ) (d=3) (PRB82(2010),174433)




Supplement: Evaluation of the asymptotic form (7" > T.)

eika: . 00 ,
/ dk 15— = / dk e’** / dtetk+nr7)
k‘+ Kk 0
= /OO dte_mz/dke—tkz—i—iwk
0
o0 . . p
- / dt e~ / ket (=325 _ / dt (%)2 N P
0 0

2
(Here we define = so that t = 7-z and k*t 4+ I- = & (z + 27 1).)

o ™ g 2K %_1 KT -1
— | dzx <_) 2 (2E) 7 5 (eta)
0 i r
(For k> 1, weuse x + 2 ! ~ 2+ €2 wheree =z — 1.)

d 1
d_1 = _
d (2K 2 e 2T 2 k12
T2 | — e — ~ —€
r RT (/ﬁJT)T

Statistical Mechanics |: Lecture 4

Supplement: Evaluation of the asymptotic form (7" = T.)

As before, we have

ikx 00 d
/dk _c :/ dt (5)2 et
k2 + KJ2 0 t
Here, by setting k = 0 (T = Tp.),

00 d 2
:/ dt (z) e m
0 t

—
— 4t

d
2\'"2 4 /d 1
-(7) (i)~

(By defining n
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Gaussian MF approximation below 7 (1)

@ To deal with the spontaneous magnetization below 7., we must
introduce a symmetry-breaking field 1 as a new variational parameter,

Ho=L"") exldrl* — ndr—o
k

@ It is, then, a little tedious but not hard to see that (4) is replaced by

fu=B+tm® + u(3A% + 6Am*> + m') + — > "loge, (5

where m = (¢ )¢ and, as before,
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Gaussian MF approximation below T (2)
@ From O0f,/0m = 0, we obtain

t 4+ 6uA + 2um? =0
t+ o

or m?= o0 (0 = 6uA) (6)

e From 0f,/0ex, = 0 (k # 0), we obtain

e, = pk? +t + 6u(A +m?).

—2(t
USing (6), €l — pk2 — Z(t -+ O’> = p(kQ —|— /{//2) (/{/2 = M)
p
@ Thus, we have obtained the Ornstein-Zernike type Green's function

1
2er, 2p(k2 + K%

G = (T <T)

The correlation length is 1/4/2 times smaller than the high-T side.

Statistical Mechanics I: Lecture 4

May 8, 2025 16 / 21




Supplement: Wick's theorem with symmetry-breaking field

For deriving (5), since the external field distorts the Gaussian distribution,
which is the precondition to the Wick’'s theorem, we must apply the

theorem to the fluctuation d¢, = P — (gbw)_o, not ¢ itself. In the
momentum space, by defining d¢x = dr — P00k (O = k.0, Po = LIm),

(Phey Phoy Do Phes )0
= (($00ky + 6Pk ) P00k, + 50k, ) (P00ks + IPks ) (00K, + Okey))o
= G0k, Okey Ok Oy + D5 (Okey Oky (O OBk, Yo + 5 similar terms)
+ ((Pky Pley )0 (P Pk, )0 + 2 similar terms)

Therefore, we obtain

Z 5Zk<¢k1 ¢k2 ¢k3 ¢k4>0

kl )k2 7k3)k4

= 6 + 665 > (60, 06—k, )0 +3 Y (D d—kr)0(Phes D—ks )0
k1

kl 7k3
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Exercise 4.1: In the lecture, in obtaining the OZ form for the correlation
function, we employed the variational Hamiltonian that has the form
L7457, ek|or]? —nor—0. What if we used Ho = A _(¢z — m)?
instead? (Here, A and m are variational parameters.) Obtain the
equations of state that relates A\ and m to p,t and u. For the sake of
simplicity, consider the case where h = 0.

We apply the GBF inequality F, = Fy + (H — Ho)o > F to

H=> (p(V§)* + 16" + ug* — ho)

and

Ho =AY (¢—m).
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For Fy, we have

BFy/N = —log / dpeNE=m)* = %log()\/ﬂ').

For calculating (H)o and (Ho)o, we apply Wick's theorem to ((d¢)™)¢ with
§¢ = ¢ —m and ((6¢)%)g = 1/(2)), to obtain,

<¢>0 =m, <¢2>0 - <(m + 5¢) >0 = m? + <(5¢2>0 = m? + i

20\
(#%)0 = ((m + 88)")o = m + 6m2(36%)0 + (36"
= m* + 6m*(56%)0 + 3(06%)3 = m +3%+ o
d
(V)0 =5 D {(Dris — 0000 = 2dhhs + 62— 2rradelo = o5 = 3

0
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Then, noting that 3 is included in the definition of the Hamiltonians and the free
energy,

F’”—ll )‘+ dp+i+3—u + t+3—u mz+um4—hm—1
N 2 %% RN ) 2

From the stationary conditions, we obtain the mean-field type behaviors.
Specifically, at h = 0,

m=0, A=dp+t—t. (t>t.)
m=+/(t. —1t)/6u, A=dp (t<t.)

where t. = —3u/\.

The same results can be obtained by working with the wave-number space instead
of the real space. We substitute ¢ in H by ¢ = doi + decSk,o, and consider
Ho = AL~¢ > 1 0¢%. One thing that needs a careful treatment the discrete
nature of “V". If we simply replace (V)2 by —k?|¢y|?, as we usually do in the
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wave-number space calculation, the result would be slightl]y different from the
real-space calculation (though the difference is merely quantitative, and not so
essential). Since V here is the difference rather than the differentiation, to be
precise, we must use 22:1 2(1 — cos kg ) in the place of k2. When we take the
average of this term over the wave numbers in the 1st Brillouin zone, the cosine
term yields zero, while the constant term yields 2d = z, which is exactly the same
as the coefficient p/\ term in the real-space calculation.
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