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In this lecture we see ...

The mean-field theory discussed in the previous section does not tell
us about the spatial correlation because the variational Hamiltonian
has trivial spatial structure, i.e., zero correlation among fluctuations
in spins at different locations.

In this lecture, starting from the Ising model, we derive the ϕ4 model.
While it inherits the same essential properties from the Ising model, it
is defined with continuous degrees of freedom in contrast to the Ising
spins.

The advantage of the continuous degrees of freedom is that they
allow as to define a variational Hamiltonian that has non-trivial
spatial structure, which will be exploited in the next lecture.
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ϕ4 field theory

We first see a very “hand-waving” derivation of the ϕ4 field theory
using the coarse-graining, starting from the Ising model.

We next see an alternative derivation which looks less hand-waving,
based on the Hubbard-Stratonovich transformation.

Since the ϕ4 theory is obtained by the coarse-graining of the Ising
model, they are supposed to share the same long-range behavior,
while they may differ quantitatively for short-range physics.

In particular, we expect, the ϕ4 model belongs to the same
universality class as the Ising model, as has been verified by a number
of arguments and numerical calculations.
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Coarse-graining

Let us consider the Ising model on the d-dimensional hyper-cubic
lattice. (Hereafter, we use symbols like x and y, instead of i and j,
to specify lattice points.)

Divide the whole lattice into cells of size ab, where a is the lattice
constant and b ≫ 1, and denote the cell located at X as Ωb(X).

Consider the “cell average” of spins SX ≡
(
1
b

)d∑
x∈Ωb(X) Sx

Consider the coarse-grained Hamiltonian H̃ defined as

e−H̃(ϕ) ≡
∑
S

∆(S|ϕ)e−H(S)

where ϕ ≡ {ϕX}, S ≡ {Sx}, and ∆(S|ϕ) (= 0, 1) takes 1 if and only
if ϕX = SX at every X.

Generally, the function H̃(ϕ) is a very complicated one. So, we try to
construct its simple approximation by intuition.
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An intuitive approximation of H̃
H̃ must have two parts: a single-cell part reflecting the physics inside
each cell and a multiple-cell part for inter-cell interactions.

The single-cell part itself consists of two parts: the energy and the
entropy. The internal energy tends to align spins parallel to each
other, giving rise to −ϕ2 term in H̃, while the internal entropy favors
ϕ ∼ 0 state, producing the terms like +ϕ2 and +ϕ4.

For the multiple-cell part, since the total energy should be larger for
large spatial inhomogeneity. It would be represented by terms like
(∇ϕ)2, etc, while the odd order terms like ∇ϕ should not appear
because of the symmetry of the system.

Putting these together and including the Zeeman term,

H̃(ϕ) =
∑
X

(
ρ|∇ϕ|2 + tϕ2 + uϕ4 − hϕ

)
(ρ, u > 0. The sign of t depends on the temperature.)
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Derivation by the Hubbard-Stratonovich transformation

ZIsing =
∑
S

eK
∑

(x,x′) SxSx′ ∝
∑
S

e
K
2
STCS

Cx,x′=


c (|x−x′|=0)

1 (|x−x′|=a)
0 (otherwise)


(· · · c must be large enough to make C positive definite. Otherwise, it’s arbitrary.)

∝
∑
S

∫
Dψ e−

1
2K
ψTC−1ψ+ψTS · · · HS transformation

=

∫
Dψ e−

1
2K
ψTC−1ψ+

∑
x log coshψx · · · trace over S

∝
∫

Dϕ e−(
K
2
ϕTC−1ϕ−

∑
x log cosh(Kϕx)) · · · ϕ ≡ K−1ψ

=

∫
Dϕ e−HHS(ϕ)

⇒ HHS(ϕ) =
K

2
ϕTC−1ϕ−

∑
x

log cosh(Kϕx)
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Relevant part of HHS

HHS(ϕ) =
K

2
ϕTC−1ϕ−

∑
x

log cosh(Kϕx)

For the first term, we see C−1 = (cI + Γ)−1 = 1
c

(
I − Γ

c + · · ·
)
where Γ is the

connectivity matrix. Since Γ’s largest eigenvalue is z, the series converges
exponentially for c > z. So, it may not be so bad to neglect non-linear terms:

ϕTC−1ϕ ≈ 1

c
ϕT

(
I − Γ

c

)
ϕ =

∑
x

(
c− z

c2
ϕ2
x +

1

c2
(∇ϕx)

2

)
(see supplement)

For the log-cosh term, by expending it w.r.t. K (log cosh(x) ≈ x2/2 − x4/12), we
obtain Hϕ4 as the relevant part of HHS (with ρ ≡ K

2c2
, t ≡ K

2
( c−z

c2
− K), u ≡ K4

12
):

HHS ≈ Hϕ4 ≡
∑
x

(
ρ(∇ϕ)2 + tϕ2 + uϕ4

)
(1)

Note that t plays the role of the temperature, because it changes sign from positive to negative

as the temperature decreases. Though the expansions used here may not be justified by the

smallness of variables, they are justified by the renormalization group arguments as we see later.
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Supplement: Hubbard-Stratonovich transformation

For an arbitrary positive definite symmetric matrix A and a vector B, we
can show the following,∫

Dψ e−
1
2

∑
x,x′ Ax,x′ψxψx′+

∑
r Brψx

=

∫
Dψ e−

1
2
ψTAψ+BTψ

=

∫
Dξ|A|−1/2e−

1
2
ξTξ+ηTξ (ξ ≡ A1/2ψ, η ≡ A−1/2B)

=

∫
Dξ|A|−1/2e−

1
2
(ξ−η)2+ 1

2
(η)2

= (2π)
N
2 |A|−1/2e

1
2
(η)2 = (2π)

N
2 |A|−1/2e

1
2
BTA−1B

By taking KC for A−1 and S for B,

e
K
2
STCS ∼

∫
Dψ e−

1
2K
ψTC−1ψ+ψTS
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Supplement: The connectivity matrix Γ and derivatives

In the derivation of the ϕ4 action, we considered the inverse of C ≡ cI + Γ, i.e.,
C−1 = 1

c

(
I − Γ

c + · · ·
)
where Γ is the lattice connectivity matrix

Γx′x ≡
{

1 (if x′ and x are nearest neighbors)
0 (othewise)

.

We used the follwoing formula:

ϕTΓϕ = 2
∑

(x′,x)

ϕx′ϕx =
∑

(x′,x)

(
ϕ2
x′ + ϕ2

x − (ϕx′ − ϕx)
2
)

=
1

2

∑
x,δ

(
ϕ2
x+δ + ϕ2

x − (ϕx+δ − ϕx)
2
)
=

∑
x

(
zϕ2

x − (∇ϕx)
2
)

where δ is a vector pointing to nearest neighbors, and ∇ϕx is the lattice gradient

vector. (It would correspond to the regular nabla operator in the limit of fine

space discretization.)
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What’s ϕ?

Remembering the HS transformation, for any real symmetric matrix A,

⟨STAS⟩Ising = Z−1
Ising

∂

∂η

∑
S

e
K
2
ST(C+ 2η

K
A)S

∣∣∣∣∣
η→0

= Z−1
HS

∫
Dϕ

∂

∂η
e−(

K
2
ϕT(C+ 2η

K
A)−1ϕ−

∑
x log cosh(Kϕx))

∣∣∣∣
η→0

= Z−1
HS

∫
Dϕ

∂

∂η
e−(

K
2
ϕT(C−1− 2η

K
C−1AC−1)ϕ−

∑
x log cosh(Kϕx))

∣∣∣∣
η→0

= Z−1
HS

∫
Dϕ e−(

K
2
ϕTC−1ϕ−

∑
x log cosh(Kϕx))ϕTC−1AC−1ϕ

= ⟨ϕTC−1AC−1ϕ⟩HS

This means that C−1ϕ behaves the same way as S. In other words, ϕx is
S̃x ≡

∑
x′ Cxx′Sx′ , i.e., a weighted sum of spins in a local cluster. (Thus,

we have recovered something similar to the hand-waving derivation of the ϕ4 theory.)
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Exercise 3.1: Consider an Ising model with only 4 spins.

H = −K(S1S2 + S3S4)−K ′(S1S3 + S2S4 + S1S4 + S2S3)

By coarse-graining ϕ1 ≡ 1
2(S1 + S2) and ϕ2 ≡ 1

2(S3 + S4), obtain the
exact effective Hamiltonian in terms of ϕ1 and ϕ2, and verify the
existence of terms proportional to ϕ2, ϕ4 and |∇ϕ|2(= (ϕ1 − ϕ2)

2),
respectively. (If necessary, solve numerically by setting some numerical
values of your choice to K and K ′.)
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