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XY model in two dimensions

@ In two dimensions, continuous spin models cannot have magnetically
ordered state with spontaneous symmetry breaking. (Mermin-Wagner
theorem)

@ The XY model, however, has a strange type of phase transition that
does not break the symmetry. (BKT transition)

@ We can understand this transition by mapping the model into the
Coulomb gas model. In this mapping, the spin vortices in the XY
model corresponds to charges.

@ By a RGT, we obtain Kosteritz's RG flow equation, that predicts
special characters of the BKT transition.
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Mermin-Wagner theorem

Theorem 1 (Mermin-Wagner(1966))

In two dimensions, if the system has a continuous symmetry (represnted

by a compact connected Lie group), it cannot be spontaneously broken at
any finite temperature. [Pfister, Commun. Math. Phys. 79 181 (1981).]

@ Consider the XY model in two dimensions:
H = —KZSZ : Sj = —KZCOS(Qi — 03)
(i) (5)
where S; = (cos 6;,sin6;)7.

@ The XY model has the U(1) symmetry with respect to the
transformation 6, — 0; + «.

@ Does the theorem prohibit the phase transition in the XY model?

Statistical Mechanics |: Lecture 14

July 15, 2024 3/30

Berezinskii-Kosterlitz- Thouless transition

@ A theoretical proposal of a new type of phase transition without
spontaneous symmetry breaking. (Berezinskii (1971),
Kosterlitz-Thouless (1973))

@ Later the predicted transition was discovered in a thin film experiment
of superfluid He4. (Bishop-Reppy (1978))
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Vortices
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o Therefore, we may switch to continuous space*) “

H= —KZ cos(6; — 0;) - e < :
(i) S

K G B
~7 / dz [VO? + uN, St

where N, is the number of vortices and pV, S i
comes from the “error” of the continuous
approximation that is large near the vortices.

Embossed on the souvenir at

Prof. Miyashita's retirement

(*) However, we can't forget about the lattice completely as we see later.
party. (June, 2019)
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Stationary configuration and fluctuation around it

@ Here we introduce a new field variable ¢ that is the deviation of 6
from its stationary solution © for a given vortex configurations:

O(x) = O(x) + ¢(x).

@ The configuration © is determined by the condition that
E[© + 00] > E[O] for any function §O(x):

0 < E[O + 60] — E[0] = %/daz [Iv(e +s0)P - |veP)
:K/de@-Vd@:—K/dw ABOIO

Therefore, © is an harmonic function (A© = 0 except at vortices).

@ O can be uniquely determined (except for the gauge degrees of
freedom) by the vortex configuration.
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Vortex/fluctuation separation

@ Using ©, we can separate the vortices from the Gaussian fluctuation:
K 2
H = 5 dx |V(O+ ¢)|” + uNy = Hy + He.
where
K
Hy = 5 /dw IVO|? 4+ uNy
K

(The ¢-linear must vanish because of the stationary condition of ©.)
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Vortex field &

@ Since © is a harmonic function, another
harmonic function ¥ must exist such that

oV /0x = —00 /0y, and 0V/Jy = 0O /0.

@ For a region I' that includes a vortex, e
d@/

/PdmA\If/aF f F i,; . _vg_,%q ////// ?

where ¢ = +1,42,--- is the vortex charge.
@ This (together with AU = 0) means

AV == 2mg;d(x — x;) = —27py ()
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Coulomb gas

o Using G(z) ~ 5= log% that satisfies AG(x) = —d(x),

¥e) =27 [ dyGle - () (pvcz:) =Y bl - wn)
@ The first term in H, can be reformed as 2D Coulomb Gas:

%/de@F = E/ala:\V\II\Q

= [2{ dw\I/A\IJ—WK/dw\IJpV

— 92K / dxdy G(CC — y)pv(w)pv(y)

A
= 21°K Z G(x i)4iqj ~ WKZ iq; log |— (1)

— x|
i, J
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Regularization

@ In (1), we have infinities for i = j and singularities for x; — x; — 0.
@ We must recall that our original problem is a lattice problem.

@ The lattice version of Green's function has no infinity at » = 0.
Therefore, we simply assume G(0) is finite, which allows us to let the
i = j terms (= 27 K2G(0) >, ¢?) absorbed in the p-term. (We can
replace Y, ¢? by N, because the |g;] > 2 terms are energetically and
entropically unfavorable and therefore irrelevant.)

@ In the lattice model, no two charges can not be close to each other
than the lattice constant. Therefore, in (1), we can replace >, ; b
2 Z(ij) with the condition that the state summation is to be taken
over the region where x; — x; > a for any ¢, j pair.
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Short summary

The XY model Hamiltonian is approximated by Hxy ~ H, + Hc where
K

7—[(;55 dx |Vo|?
v~ oulom =2nK 1 i 1 I NV
Hy = Hcoulomb = 27 qug Og|a:7;—a:j|+'u
(i5)
K
Ho= [ de V|

with the constraint on the region of the state summation that no two
charges do not come closer than the distance a.

Vortices form two-dimensional Coulomb gas.
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Grand partition function (. M. Kosterlitz: J. Phys. C 7 1046 (1974))

We assume that ¢; = +1 since vortices |g;| > 1 are energetically and
entropically unfavorable and do not contribute. Then, defining

g=2rK, (=c¢e",

the grand partition function becomes
N V(XY
2(g.0) =) (N!)Q/ dX ndYn e 9VN (XN YN)
N Q(a)

Q(a) ={ (Xn,Yn) | any two charges are separated by more than a}
V(XN YN) =D o(@sz)) Y vy ;) — > o(xi,y;)

(45) (45) ij
v(w,y) = log(A/]w — yl)

where Xy = (ml,ivg, ce ,CUN) and Yy = (yl,yz, cee ,yN) are the
positions of positive and negative vortices, respectively.
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Partial trace over charge pairs of size r < a’ = (1 4+ A)a

@ In the lowest order, g is unchanged by
RGT, because of the character of the
logarithmic potential ( glogr = glogr’
+glogb = glogr’ 4+ g\ with no change
in the prefactor of log).

@ The second-order change in g arises +4
from the partial trace over Q(a) \Q(d'). “Qr@?;/) (a<r< o)
The main contribution is the screening "
effect by the positive-negative charge -
pairs with the distance a < r < d'. it

Therefore, it is proportional to the
squared charge density:

g ~g—NAC.

(A more detailed derivation will follow.)
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Screening effect (A simple derivation)

@ In the RG from a to o/ = (1 + \)a, pairs of opposite charges, i.e.,
dipoles with moment qa, are traced out, modifying g.

@ We can consider g as g = (/¢ with the inverse temperature 5 and the
dielectric constant €. With no screening, g = 3/¢p.

@ Generally, when the electric field E induces the polarization density
P, weget D=¢E =¢yE+ P. Thus, Ae = ¢ — ¢y = |P|/|E|.

e P = py(d) where p; is the density of the charge pairs and d is the
dipole moment of a pair.

@ p(= charge density) < { = pg ~ ,02/ dxdy ~ \a*(?
a<|z—y[<a(l+A)

o (d) ~ Tdr ePEdd) Tdr ePEd L BEd? ~ BEa?q?

o Therefore, Ae =|P|/|E|~ A\3¢*a*¢? .
o Therefore, ¢’ ~ B/(e0 + Ma'q®BC%) ~ g — AAC® with A ~ a*q?g*.
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Rescaling

@ The first factor contributing to (' comes from the Jacobian
d(Xn,YN)/d( XY, YY) = (a’/a)?™, which contributes a factor e
to (.

@ The second factor contributing to ¢’ comes from the substitution of
(Xn,Yn) by (bX ), bY}) in the Coulomb interaction. The
Hamiltonian has N(N — 1) terms like —glog(z; — x;) and N? terms
like glog(x; —y;j). When x; is replaced by bz}, each log produces A
because log(z; — ;) = log(x; — @) + A. Therefore, in total, we
have the term g(—N(N — 1) + N?)X\ = gN ) in the rescaled
Hamiltonian. This amounts to a factor e 9*/2 contributing to ¢’.

@ Putting these two factors together,

¢ = ¢ x e(279/2A
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RG flow equation

We have obtained the RG flow equations ¢’ = g — NA¢? , and

¢'=(x e2=9/2X |t is convenient to use x = 2 — g/2 instead of g, and
focus on the vicinity of z = ( = 0.

dr 1dgNA2 a¢ B
a 55'\'5( and 5—(2 9/2)¢ = x(

We can remove the factor A/2 by defining y = \/A/2(¢. Thus we have
obtained the famous RG flow equation of the Kosterlitz-Thouless
transition:

r=2—7K

) (Kosterlitz's RG eq.)

Y = (const) X et
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RG flow diagram

@ We can show that t = y? — 22 is the
constant of motion of the RG equation

dx o dy - -
ﬁzy, azmy — ‘.
(o yortrzes ) |
@ The value of £ depends only on the initial
values of the parameter, y and K = 1/T.
Schematically, the initial points are located
on the ¢ axis.

@ There are two cases: (t < 0) y goes to zero
(no vortices) and (¢ > 0) y goes to infinity
(vortex proliferation). The separatorix,

t = 0, corresponds to the BKT transition.
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Solution and correlation length

d
@ In the case where t = y? — 22 > 0, d—izyQ:t—ka. This

equation has the solution x()\) = v/t tan (\/E()\ — )\0)) :

@ Consider a travel along the RGT flow line with ¢ > 0 from A = 0 to
A« = log(&/a). (€ is the correlation length.) Before RGT is applied,
we know that no parameter is extreme, which means
z(0),y(0) ~ O(1). At A = A, the correlation length (= the mean
distance between vortices) is a; the vortex density is ~ a~2, which
leads to y(A«) ~ O(1).

@ When 0 < t < 1, these conditions imply that during this travel the
argument of tan function varies from somewhere close to —7/2 to
somewhere close to 7/2. This means m = /t)\,.

@ This means that

. const
§ ~ eVt ~ exp <—) (More divergent than any power-law)

a VIT—T.

Statistical Mechanics |: Lecture 14

July 15, 2024 18 / 30




Correlation function below the transition temperature

@ When T < T,, the system flows to the vortex free states, i.e., it is
asymptotically described by the Gaussian fixed-point Hamiltonian.
@ Therefore, the 2-point correlation function is

(5(2) 5" (y) + 8¥(2)S"(y)) = (D7)
/ dgp e 5 (VAN i _ 71 / dp o 59T A0
where w(x) =1, w(y) = —1, and w(r) = 0 everywhere else. Because
of the relation between the lattice Laplacian and the lattice Green's

function, A = -G, and G(=,y) ~ 1/(27)log(A/|z — y|), the
equation can be continued by Gaussian integras as

_ 5w Gw _ o~k (CO)-C() o -

@ The correlation decays algebraically not only at the transition point
but also any temperature below.
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Universal jump

@ Thus, we have obtained the correlation function ~ =" with

r kgT
oK 2nJ’

’r]:

This type of correlation is called “quasi-long-range order”.

@ In particular, at the transition point, K. = % the exponent takes a
universal value, n(K = K.) =1/4.

@ In the context of 2D superfluidity, when it is finite, the superfulid
density pg is related to K as

2 ps or _ mkgT
Ps = 2mh2n

where m is the mass of a constituent particle. Therefore, at the BKT
transition, ps jump from 0 to the universal magnitude 2mhp T

Th?2
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Summary

@ The XY model is mapped to a composite system of vortices and
fluctuations.

The vortices behave as a 2D Coulomb gas.

The fluctuations are governed by the massless Gaussian model.

The RGT to the 2D Coulomb gas yields a set of RG flow equation.
Above the transition temperature, the correlation length diverges as
¢ ~exp(c/vT —Tp).

@ Below the transition temperature, the system flows into the
vortex-less Gaussian FP, where the spin-spin correlation obeys
power-law with the exponent 7 varying with temperature.

@ Its value is 1/4 at the transition point. This means the universal jump
in the superfluid density.
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Supplement: The original derivation (kosterlitz: J.Phys.C7 1046 (1974))

@ In what follows, we assume that ¢; = %1 since vortices |g;| > 1 are
energetically unfavorable and would not yield dominant contribution.
@ Xy = (x1,x2,--,xyN) and Yy = (y1,¥y2, -+ ,yn) are the positions
of positive and negative vortices, respectively.
@ Then, the grand partition function is
C2N
29,0 =) rypplhle) (C=¢)

N

Z%(g) = /Q ( )dXNdYN e IVNXNIN) (g = 97 K)

Q(a) ={ (Xn,Yn) | Any two elements are apart by more than a }
Vv (XN, Ya) = =) (v(@i,25) + v(yi, v))) + D v(i, yj)

(45) ij
v(w,y) = log(|z — yl|/A)
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Supplement: Partial trace — Increasing the cut-off a

K\)ﬁ

o We take the partial integral over the region L a/
AQ(a) = Q(a) — Q(a’) where a’ = (1 + N)a. //

@ The region consists of 3 components:

a)~ Y Qf7(d)+) (T () + Q7 (d)
1] (i)
() = { (Xn,Yn) € Q(a) |

All pairs are separated by more than a/,

@ Following the general program of the RGT, we
first want to take the partial trace with respect
to the short-scale degrees of freedom.

=

except a < |x; —y;| <d. }
Q;;"'(a') =...
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Supplement: Partial trace — Dipole-mediated interaction

The contribution from Q1 should be dominant.

I —Z% =Y / dXndYy e 9N = N2 / dXndYy e 9N
ij

Qf7 (a) Qi)

:NZ/ dXn_1dYN_1 e—gVN_1/ dx Ndyy e—gzi[AU(mi)—AU(yi)]
Q(a’)

a<|len—ynN|<a’

(Av(zi) = v(zi, yn) — v(zi, TN))
~ N2/ dXN_ldYN_l e_gVN_l
Q(a’)
N-1

X / dxndyn 1+ % (Z (Av(z;) — AU(%)))

a<len—yn|<a’ i=1

(%>N2/ dXN_ldYN_l e_gVN_l X <2ﬁ7/¢i/2/)(ﬂ/2 +47r2a4)\ngN_1>
* Q(a’)

(contribution to the regular part is omitted)
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Supplement: Partial trace — Screening effect

2N

=(9,¢) =) 2R ()
N
C2N )
~ Z N2 Zf{;(g) + N? / dXn_1dYnN_1 e_QVN—l,Yg2>\VN_1
N ( ) Q(a/)

(v = 4r?a*; (N —1) — N)

- ; (N1)2

C2N

/ dXndYy e (14 7g?ACVy)
Q(a’)

/ AX ndYy e~ 971972V
Q(a’)

The 2nd order perturbation screens the Coulomb interaction
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Supplement: Rescaling of the interaction

We rescale the length so that a’ comes back to a.

a —
w;:—mize )‘wi

/

a

By this replacement, the interaction becomes

VN (XN, YN)
A A
= Z (log + log ) — Z log
— L — &y Yi —Yj — L —Y;
(i5) i
:Z log — — + log — ~ — 2\ —Z log ,A ~ — A
(i5) (2 — ) (vi — ) i (i — ;)

Note that we do not have any rescaling factor in front of Vi (Xf\] s YJ/V) in contrast to the regular perturbation. Because of

this, we do not have the linear term in the RG flow equation, i.e., y,, = 0.
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Supplement: Rescaling

Now, we can summarize the RGT as

2(g,¢)

2w

C2N

(2ANA / AX A, e~ (19 NV (X ¥E) —gNA
Q(a)

I
[ =0

( ')2 (ge(d—%)AfN/ dX ndYN o~ (079> PN VN (XN, Yv)
' Q(a)

o(regular term)

[
o
~
@

where
= el and g =g —7g°C*A
In the form of differential equations,
dC g dg 2
9_ < 2
dar ( 2)< and 73 = =19
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Supplement: Screeing by dimers

r= | ey S (Bul) = ol (Aole,) - Au(y;)
a<|lxny—YN|<a ij

@ We use approximation

Av(r) =log(r — xy) — log(r —yn),~ — Ti 7 TN

——d. (d= — .
|wi_mN’2 ( YN CBN)

@ Consider a single term

I;; E/ dxndyy ZA’U x;)Av(y;)
a<|len—yn|<a’

/da:N/ dd( — 2.d>(yi_—$N2.d)
a<|d|<a’ |z — x| yi — @ N|

_27ra4>\/da:N _mN2. y—a:N2
i —xN[* |y — N
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Supplement: Screeing by dimers (2)

T; — TN Y; — TN
Lij(xi, yj) ~ 27T0L4)\/d5'3N |wl_ z N2 ' |yl_ |2
1
L
~ 8rat log ———
(*) |zi —

I=) (Lij(xi, ;) + Lij (i, yj) — Lij (@i, y5) — Lij (i )
1J

= 8% A — ) (@i, ;) +v(yi, yy)) + > v(wi,y;)
(i) ij
= 812a* A\ x Viv_1(Xn_1,YNn_1)
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Supplement: An integral formula

cos O
d
T R.R,
:/dw —r2/4
((5)2+ R%)2 — r2R2 cos? ¢ P
L 2 .2 sk e o
[:/ dRRRTTM AN/
0

X /27‘1’ d¢
o (r?/4+4+ R?)2 —r2R?cos? ¢

_/L 2nR L LP4rt4 L
) R? 7“2/4_7T & r2/4 s
21w
We've used/ dé .
a—l—bcosQ(b Va(a+b)
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