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XY model in two dimensions

In two dimensions, continuous spin models cannot have magnetically
ordered state with spontaneous symmetry breaking. (Mermin-Wagner
theorem)

The XY model, however, has a strange type of phase transition that
does not break the symmetry. (BKT transition)

We can understand this transition by mapping the model into the
Coulomb gas model. In this mapping, the spin vortices in the XY
model corresponds to charges.

By a RGT, we obtain Kosteritz’s RG flow equation, that predicts
special characters of the BKT transition.
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Mermin-Wagner theorem

Theorem 1 (Mermin-Wagner(1966))

In two dimensions, if the system has a continuous symmetry (represnted
by a compact connected Lie group), it cannot be spontaneously broken at
any finite temperature. [Pfister, Commun. Math. Phys. 79 181 (1981).]

Consider the XY model in two dimensions:

H = −K
∑
(ij)

Si · Sj = −K
∑
(ij)

cos(θi − θj)

where Si ≡ (cos θi, sin θi)
T.

The XY model has the U(1) symmetry with respect to the
transformation θi → θi + α.

Does the theorem prohibit the phase transition in the XY model?
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Berezinskii-Kosterlitz-Thouless transition

A theoretical proposal of a new type of phase transition without
spontaneous symmetry breaking. (Berezinskii (1971),
Kosterlitz-Thouless (1973))

Later the predicted transition was discovered in a thin film experiment
of superfluid He4. (Bishop-Reppy (1978))
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Vortices

A typical configuration of spins at low temperature
consists of a smooth texture with vortices.

The smooth texture allows the approximation,

cos(θi − θj) ≈ 1− 1

2
|rij · ∇θ|2

Therefore, we may switch to continuous space(∗)

H = −K
∑
(ij)

cos(θi − θj)

≈ K

2

∫
dx |∇θ|2 + µNv

where Nv is the number of vortices and µNv

comes from the “error” of the continuous
approximation that is large near the vortices.
(∗) However, we can’t forget about the lattice completely as we see later.

Embossed on the souvenir at

Prof. Miyashita’s retirement

party. (June, 2019)
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Stationary configuration and fluctuation around it

Here we introduce a new field variable ϕ that is the deviation of θ
from its stationary solution Θ for a given vortex configurations:

θ(x) = Θ(x) + ϕ(x).

The configuration Θ is determined by the condition that
E[Θ + δΘ] ≥ E[Θ] for any function δΘ(x):

0 ≤ E[Θ + δΘ]− E[Θ] =
K

2

∫
dx
{
|∇(Θ + δΘ)|2 − |∇Θ|2

}
= K

∫
dx∇Θ · ∇δΘ = −K

∫
dx △ΘδΘ

Therefore, Θ is an harmonic function (△Θ = 0 except at vortices).

Θ can be uniquely determined (except for the gauge degrees of
freedom) by the vortex configuration.
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Vortex/fluctuation separation

Using Θ, we can separate the vortices from the Gaussian fluctuation:

H =
K

2

∫
dx |∇(Θ + ϕ)|2 + µNv = Hv +HG.

where

Hv ≡ K

2

∫
dx |∇Θ|2 + µNv

HG ≡ K

2

∫
dx |∇ϕ|2

(The ϕ-linear must vanish because of the stationary condition of Θ.)
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Vortex field Ψ

Since Θ is a harmonic function, another
harmonic function Ψ must exist such that
∂Ψ/∂x = −∂Θ/∂y, and ∂Ψ/∂y = ∂Θ/∂x.

For a region Γ that includes a vortex,∫
Γ
dx △Ψ =

∫
∂Γ

dn · ∇Ψ

= −
∫
∂Γ

dl · ∇Θ = −2πq

where q = ±1,±2, · · · is the vortex charge.

This (together with △Ψ = 0) means

△Ψ = −
∑
i

2πqiδ(x− xi) = −2πρv(x)
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Coulomb gas

Using G(x) ≈ 1
2π log Λ

r that satisfies △G(x) = −δ(x),

Ψ(x) = 2π

∫
dyG(x− y)ρv(y).

(
ρv(x) =

∑
i

qiδ(x− xi)

)
The first term in Hv can be reformed as 2D Coulomb Gas:

K

2

∫
dx |∇Θ|2 = K

2

∫
dx |∇Ψ|2

= −K

2

∫
dxΨ△Ψ = πK

∫
dxΨρv

= 2π2K

∫
dxdyG(x− y)ρv(x)ρv(y)

= 2π2K
∑
i,j

G(xi − xi)qiqj ≈ πK
∑
i,j

qiqj log
Λ

|xi − xj |
(1)
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Regularization

In (1), we have infinities for i = j and singularities for xi − xj → 0.

We must recall that our original problem is a lattice problem.

The lattice version of Green’s function has no infinity at r = 0.
Therefore, we simply assume G(0) is finite, which allows us to let the
i = j terms (≡ 2π2K2G(0)

∑
i q

2
i ) absorbed in the µ-term. (We can

replace
∑

i q
2
i by Nv because the |qi| ≥ 2 terms are energetically and

entropically unfavorable and therefore irrelevant.)

In the lattice model, no two charges can not be close to each other
than the lattice constant. Therefore, in (1), we can replace

∑
i,j by

2
∑

(ij) with the condition that the state summation is to be taken
over the region where xi − xj > a for any i, j pair.
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Short summary

The XY model Hamiltonian is approximated by HXY ≈ Hv +HG where

HG ≡ K

2

∫
dx |∇ϕ|2

Hv ≈ HCoulomb ≡ 2πK
∑
(ij)

qiqj log
Λ

|xi − xj |
+ µNv

HG ≡ K

2

∫
dx |∇ϕ|2

with the constraint on the region of the state summation that no two
charges do not come closer than the distance a.

Vortices form two-dimensional Coulomb gas.
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Grand partition function (J. M. Kosterlitz: J. Phys. C 7 1046 (1974))

We assume that qi = ±1 since vortices |qi| > 1 are energetically and
entropically unfavorable and do not contribute. Then, defining

g ≡ 2πK, ζ ≡ eµ,

the grand partition function becomes

Ξ(g, ζ) =
∑
N

ζ2N

(N !)2

∫
Ω(a)

dXNdYN e−gVN (XN ,YN )

Ω(a) ≡ { (XN , YN ) | any two charges are separated by more than a}

VN (XN , YN ) ≡
∑
(ij)

v(xi,xj)
∑
(ij)

v(yi,yj)−
∑
ij

v(xi,yj)

v(x,y) ≡ log(Λ/|x− y|)

where XN ≡ (x1,x2, · · · ,xN ) and YN ≡ (y1,y2, · · · ,yN ) are the
positions of positive and negative vortices, respectively.
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Partial trace over charge pairs of size r < a′ = (1 + λ)a

In the lowest order, g is unchanged by
RGT, because of the character of the
logarithmic potential ( g log r = g log r′

+g log b = g log r′ + gλ with no change
in the prefactor of log).

The second-order change in g arises
from the partial trace over Ω(a) \Ω(a′).
The main contribution is the screening
effect by the positive-negative charge
pairs with the distance a < r < a′.
Therefore, it is proportional to the
squared charge density:

g′ ∼ g − λAζ2.

(A more detailed derivation will follow.)
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Screening effect (A simple derivation)

In the RG from a to a′ = (1 + λ)a, pairs of opposite charges, i.e.,
dipoles with moment qa, are traced out, modifying g.

We can consider g as g ≡ β/ϵ with the inverse temperature β and the
dielectric constant ϵ. With no screening, g = β/ϵ0.

Generally, when the electric field E induces the polarization density
P , we get D ≡ ϵE = ϵ0E + P . Thus, ∆ϵ ≡ ϵ− ϵ0 = |P |/|E|.
P = ρd⟨d⟩ where ρd is the density of the charge pairs and d is the
dipole moment of a pair.

ρ(≡ charge density) ∝ ζ ⇒ ρd ∼ ρ2
∫
a<|x−y|<a(1+λ)

dxdy ∼ λa2ζ2

⟨d⟩ ∼ Tr
d
eβE·dd/Tr

d
eβE·d ∼ βEd2 ∼ βEa2q2

Therefore, ∆ϵ = |P |/|E| ∼ λβq2a4ζ2 .

Therefore, g′ ∼ β/(ϵ0 + λa4q2βζ2) ∼ g − λAζ2 with A ∼ a4q2g2.
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Rescaling

The first factor contributing to ζ ′ comes from the Jacobian
d(XN , YN )/d(X ′

N , Y ′
N ) = (a′/a)2dN , which contributes a factor edλ

to ζ ′.

The second factor contributing to ζ ′ comes from the substitution of
(XN , YN ) by (bX ′

N , bY ′
N ) in the Coulomb interaction. The

Hamiltonian has N(N − 1) terms like −g log(xi − xj) and N2 terms
like g log(xi − yj). When xi is replaced by bx′

i, each log produces λ
because log(xi − xj) = log(x′

i − x′
j) + λ. Therefore, in total, we

have the term g(−N(N − 1) +N2)λ = gNλ in the rescaled
Hamiltonian. This amounts to a factor e−gλ/2 contributing to ζ ′.

Putting these two factors together,

ζ ′ = ζ × e(2−g/2)λ
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RG flow equation

We have obtained the RG flow equations g′ = g − λAζ2 , and
ζ ′ = ζ × e(2−g/2)λ . It is convenient to use x ≡ 2− g/2 instead of g, and
focus on the vicinity of x = ζ = 0.

dx

dλ
= −1

2

dg

dλ
≈ A

2
ζ2 and

dζ

dλ
= (2− g/2)ζ = xζ

We can remove the factor A/2 by defining y ≡
√
A/2ζ. Thus we have

obtained the famous RG flow equation of the Kosterlitz-Thouless
transition:


dx

dλ
= y2

dy

dλ
= xy

(
x = 2− πK

y = (const) × eµ

)
(Kosterlitz’s RG eq.)
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RG flow diagram

We can show that t ≡ y2 − x2 is the
constant of motion of the RG equation

dx

dλ
= y2,

dy

dλ
= xy.

The value of t depends only on the initial
values of the parameter, µ and K = 1/T .
Schematically, the initial points are located
on the t axis.

There are two cases: (t < 0) y goes to zero
(no vortices) and (t > 0) y goes to infinity
(vortex proliferation). The separatorix,
t = 0, corresponds to the BKT transition.
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Solution and correlation length

In the case where t ≡ y2 − x2 > 0,
dx

dλ
= y2 = t+ x2. This

equation has the solution x(λ) =
√
t tan

(√
t (λ− λ0)

)
.

Consider a travel along the RGT flow line with t > 0 from λ = 0 to
λ∗ ≡ log(ξ/a). (ξ is the correlation length.) Before RGT is applied,
we know that no parameter is extreme, which means
x(0), y(0) ∼ O(1). At λ = λ∗, the correlation length (= the mean
distance between vortices) is a; the vortex density is ∼ a−2, which
leads to y(λ∗) ∼ O(1).
When 0 < t ≪ 1, these conditions imply that during this travel the
argument of tan function varies from somewhere close to −π/2 to
somewhere close to π/2. This means π =

√
tλ∗.

This means that

ξ

a
∼ e

π√
t ∼ exp

(
const√
T − Tc

)
. (More divergent than any power-law)
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Correlation function below the transition temperature

When T < Tc, the system flows to the vortex free states, i.e., it is
asymptotically described by the Gaussian fixed-point Hamiltonian.

Therefore, the 2-point correlation function is

⟨Sx(x)Sx(y) + Sy(x)Sy(y)⟩ = ⟨ei(ϕ(x)−ϕ(y))⟩

= Z−1
G

∫
dϕ e−

K
2
(∇ϕ)·(∇ϕ)−iω·ϕ = Z−1

G

∫
dϕ e

K
2
ϕT∆ϕ−iω·ϕ

where ω(x) ≡ 1, ω(y) ≡ −1, and ω(r) ≡ 0 everywhere else. Because
of the relation between the lattice Laplacian and the lattice Green’s
function, ∆ = −G−1, and G(x,y) ∼ 1/(2π) log(Λ/|x− y|), the
equation can be continued by Gaussian integras as

= e−
1

2K
ωTGω = e−

1
K
(G(0)−G(r)) ∝ r−

1
2πK .

The correlation decays algebraically not only at the transition point
but also any temperature below.
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Universal jump

Thus, we have obtained the correlation function ∼ r−η with

η =
1

2πK
=

kBT

2πJ
.

This type of correlation is called “quasi-long-range order”.

In particular, at the transition point, Kc ≡ 2
π , the exponent takes a

universal value, η(K = Kc) = 1/4.

In the context of 2D superfluidity, when it is finite, the superfulid
density ρs is related to K as

K =
ℏ2ρs
mkBT

or ρs =
mkBT

2πℏ2η

where m is the mass of a constituent particle. Therefore, at the BKT
transition, ρs jump from 0 to the universal magnitude 2mkBT

πℏ2 .
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Summary

The XY model is mapped to a composite system of vortices and
fluctuations.

The vortices behave as a 2D Coulomb gas.

The fluctuations are governed by the massless Gaussian model.

The RGT to the 2D Coulomb gas yields a set of RG flow equation.

Above the transition temperature, the correlation length diverges as
ξ ∼ exp(c/

√
T − Tc).

Below the transition temperature, the system flows into the
vortex-less Gaussian FP, where the spin-spin correlation obeys
power-law with the exponent η varying with temperature.

Its value is 1/4 at the transition point. This means the universal jump
in the superfluid density.
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Supplement: The original derivation (Kosterlitz: J.Phys.C7 1046 (1974))

In what follows, we assume that qi = ±1 since vortices |qi| > 1 are
energetically unfavorable and would not yield dominant contribution.

XN ≡ (x1,x2, · · · ,xN ) and YN ≡ (y1,y2, · · · ,yN ) are the positions
of positive and negative vortices, respectively.

Then, the grand partition function is

Ξ(g, ζ) =
∑
N

ζ2N

(N !)2
Za
N (g) (ζ ≡ eµ)

Za
N (g) ≡

∫
Ω(a)

dXNdYN e−gVN (XN ,YN ) (g ≡ 2πK)

Ω(a) ≡ { (XN , YN ) | Any two elements are apart by more than a }

VN (XN , YN ) ≡ −
∑
(ij)

(v(xi,xj) + v(yi,yj)) +
∑
ij

v(xi,yj)

v(x,y) ≡ log(|x− y|/Λ)
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Supplement: Partial trace — Increasing the cut-off a

Following the general program of the RGT, we
first want to take the partial trace with respect
to the short-scale degrees of freedom.

We take the partial integral over the region
∆Ω(a) ≡ Ω(a)− Ω(a′) where a′ ≡ (1 + λ)a.

The region consists of 3 components:

∆Ω(a) ≈
∑
ij

Ω+−
ij (a′) +

∑
(ij)

(Ω++
ij (a′) + Ω−−

ij (a′))

Ω+−
ij (a′) ≡ { (XN , YN ) ∈ Ω(a) |
All pairs are separated by more than a′,

except a < |xi − yj | < a′. }
Ω++
ij (a′) ≡ · · ·

Statistical Mechanics I: Lecture 14 July 15, 2024 23 / 30

Supplement: Partial trace — Dipole-mediated interaction

The contribution from Ω+− should be dominant.

Za
N − Za′

N ≈
∑
ij

∫
Ω+−

ij (a′)

dXNdYN e−gVN = N2

∫
Ω+−

NN (a′)

dXNdYN e−gVN

= N2

∫
Ω(a′)

dXN−1dYN−1 e
−gVN−1

∫
dxNdyN

a<|xN−yN |<a′
e−g

∑
i[∆v(xi)−∆v(yi)]

(∆v(xi) ≡ v(xi,yN )− v(xi,xN ))

≈ N2

∫
Ω(a′)

dXN−1dYN−1 e
−gVN−1

×
∫

dxNdyN
a<|xN−yN |<a′

1 +
g2

2

(
N−1∑
i=1

(∆v(xi)−∆v(yi))

)2


≈
(∗)

N2

∫
Ω(a′)

dXN−1dYN−1 e
−gVN−1 ×

(
2πa2λL2////////// + 4π2a4λg2VN−1

)
(contribution to the regular part is omitted)
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Supplement: Partial trace — Screening effect

Ξ(g, ζ) =
∑
N

ζ2N

(N !)2
Za
N (g)

≈
∑
N

ζ2N

(N !)2

(
Za′
N (g) +N2

∫
Ω(a′)

dXN−1dYN−1 e
−gVN−1γg2λVN−1

)

(γ ≡ 4π2a4; (N − 1) → N)

=
∑
N

ζ2N

(N !)2

∫
Ω(a′)

dXNdYN e−gVN
(
1 + γg2λζ2VN

)
≈
∑
N

ζ2N

(N !)2

∫
Ω(a′)

dXNdYN e−(g−γg2λζ2)VN

The 2nd order perturbation screens the Coulomb interaction
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Supplement: Rescaling of the interaction

We rescale the length so that a′ comes back to a.

x′
i =

a

a′
xi = e−λxi

By this replacement, the interaction becomes

VN (XN , YN )

=
∑
(ij)

(
log

Λ

xi − xj
+ log

Λ

yi − yj

)
−
∑
ij

log
Λ

xi − yj

=
∑
(ij)

(
log

Λ

(x′
i − x′

j)
+ log

Λ

(y′
i − y′

j)
− 2λ

)
−
∑
ij

(
log

Λ

(x′
i − y′

j)
− λ

)
= VN (X ′

N , Y ′
N ) + (−N(N − 1) +N2)λ = VN (X ′

N , Y ′
N ) +Nλ

Note that we do not have any rescaling factor in front of VN (X′
N , Y ′

N ) in contrast to the regular perturbation. Because of

this, we do not have the linear term in the RG flow equation, i.e., yµ = 0.
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Supplement: Rescaling

Now, we can summarize the RGT as

Ξ(g, ζ)

=
∑
N

ζ2N

(N !)2
e2dNλ

∫
Ω(a)

dX ′
NdY ′

N e−(g−γg2ζ2λ)VN (X′
N ,Y ′

N )e−gNλ

=
∑
N

1

(N !)2

(
ζe(d−

g
2
)λ
)2N ∫

Ω(a)
dXNdYN e−(g−γg2ζ2λ)VN (XN ,YN )

= Ξ(ζ ′, g′)× e(regular term)

where

ζ ′ = ζe(d−
g
2 )λ and g′ = g − γg2ζ2λ

In the form of differential equations,

dζ

dλ
=
(
2− g

2

)
ζ and

dg

dλ
= −γg2ζ2
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Supplement: Screeing by dimers

I ≡
∫
a<|xN−yN |<a′

dxdy
∑
ij

(∆v(xi)−∆v(yi))(∆v(xj)−∆v(yj))

We use approximation

∆v(r) ≡ log(r − xN )− log(r − yN ),≈ − xi − xN

|xi − xN |2
· d. (d ≡ yN − xN .)

Consider a single term

Iij ≡
∫
a<|xN−yN |<a′

dxNdyN

∑
ij

∆v(xi)∆v(yi)

≈
∫

dxN

∫
a<|d|<a′

dd

(
xi − xN

|xi − xN |2
· d
)(

yi − xN

|yi − xN |2
· d
)

= 2πa4λ

∫
dxN

xi − xN

|xi − xN |2
· yi − xN

|yi − xN |2
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Supplement: Screeing by dimers (2)

Iij(xi,yj) ≈ 2πa4λ

∫
dxN

xi − xN

|xi − xN |2
· yi − xN

|yi − xN |2

≈
(∗)

8π2a4 log
L

|xi − yj |

I =
∑
ij

(Iij(xi,xj) + Iij(yi,yj)− Iij(xi,yj)− Iij(yi,xj))

= 8π2a4λ

−
∑
(ij)

(v(xi,xj) + v(yi,yj)) +
∑
ij

v(xi,yj)


= 8π2a4λ× VN−1(XN−1, YN−1)
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Supplement: An integral formula

I ≡
∫

dx
cos θ

R1R2

=

∫
dx

R2 − r2/4

(( r2 )
2 +R2)2 − r2R2 cos2 ϕ

I =

∫ L

0

dRR
R2 − r2/4

4

×
∫ 2π

0

dϕ

(r2/4 +R2)2 − r2R2 cos2 ϕ

=

∫ L

0

dR
2πR

R2 + r2/4
= π log

L2 + r2/4

r2/4
≈ 2π log

L

r

We’ve used
∫ 2π

0

dϕ

a+ b cos2 ϕ
=

2π√
a(a+ b)

.
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