Lecture 14: Berezinskii-Kosterlitz-Thouless transition

Naoki KAWASHIMA

ISSP, U. Tokyo

July 15, 2024

Statistical Mechanics I: Lecture 14

July 15, 2024 1 / 30

$\boldsymbol{X}\boldsymbol{Y}$ model in two dimensions

- In two dimensions, continuous spin models cannot have magnetically ordered state with spontaneous symmetry breaking. (Mermin-Wagner theorem)
- The XY model, however, has a strange type of phase transition that does not break the symmetry. (BKT transition)
- We can understand this transition by mapping the model into the Coulomb gas model. In this mapping, the spin vortices in the XY model corresponds to charges.
- By a RGT, we obtain Kosteritz's RG flow equation, that predicts special characters of the BKT transition.

Mermin-Wagner theorem

Theorem 1 (Mermin-Wagner(1966))

In two dimensions, if the system has a continuous symmetry (represented by a compact connected Lie group), it cannot be spontaneously broken at any finite temperature. [Pfister, Commun. Math. Phys. 79 181 (1981).]

• Consider the XY model in two dimensions:

$$\mathcal{H} = -K \sum_{(ij)} S_i \cdot S_j = -K \sum_{(ij)} \cos(\theta_i - \theta_j)$$

where $S_i \equiv (\cos \theta_i, \sin \theta_i)^{\mathsf{T}}$.

- The XY model has the U(1) symmetry with respect to the transformation $\theta_i \rightarrow \theta_i + \alpha$.
- Does the theorem prohibit the phase transition in the XY model?

Berezinskii-Kosterlitz-Thouless transition

- A theoretical proposal of a new type of phase transition without spontaneous symmetry breaking. (Berezinskii (1971), Kosterlitz-Thouless (1973))
- Later the predicted transition was discovered in a thin film experiment of superfluid He4. (Bishop-Reppy (1978))

Vortices

- A typical configuration of spins at low temperature consists of a smooth texture with vortices.
- The smooth texture allows the approximation,

$$\cos(\theta_i - \theta_j) \approx 1 - \frac{1}{2} |\mathbf{r}_{ij} \cdot \nabla \theta|^2$$

• Therefore, we may switch to continuous space^(*)

$$\mathcal{H} = -K \sum_{(ij)} \cos(\theta_i - \theta_j)$$

 $\approx \frac{K}{2} \int d\boldsymbol{x} \, |\nabla \theta|^2 + \mu N_{v}$

where $N_{\rm v}$ is the number of vortices and μN_v comes from the "error" of the continuous approximation that is large near the vortices.

 (\ast) However, we can't forget about the lattice completely as we see later.

Embossed on the souvenir at Prof. Miyashita's retirement party. (June, 2019)

Statistical Mechanics I: Lecture 14

July 15, 2024 5 / 30

Stationary configuration and fluctuation around it

• Here we introduce a new field variable ϕ that is the deviation of θ from its stationary solution Θ for a given vortex configurations:

 $\theta(\boldsymbol{x}) = \Theta(\boldsymbol{x}) + \phi(\boldsymbol{x}).$

• The configuration Θ is determined by the condition that $E[\Theta + \delta \Theta] \ge E[\Theta]$ for any function $\delta \Theta(\boldsymbol{x})$:

$$0 \le E[\Theta + \delta\Theta] - E[\Theta] = \frac{K}{2} \int d\boldsymbol{x} \left\{ |\nabla(\Theta + \delta\Theta)|^2 - |\nabla\Theta|^2 \right\}$$
$$= K \int d\boldsymbol{x} \,\nabla\Theta \cdot \nabla\delta\Theta = -K \int d\boldsymbol{x} \,\Delta\Theta\delta\Theta$$

Therefore, Θ is an harmonic function ($\triangle \Theta = 0$ except at vortices).

• Θ can be uniquely determined (except for the gauge degrees of freedom) by the vortex configuration.

Vortex/fluctuation separation

• Using Θ , we can separate the vortices from the Gaussian fluctuation:

$$\mathcal{H} = \frac{K}{2} \int d\boldsymbol{x} |\nabla(\Theta + \phi)|^2 + \mu N_{\rm v} = \mathcal{H}_{\rm v} + \mathcal{H}_{\rm G}.$$

where

$$egin{aligned} \mathcal{H}_{\mathrm{v}} &\equiv rac{K}{2} \int doldsymbol{x} \; |
abla \Theta|^2 + \mu N_{\mathrm{v}} \ \mathcal{H}_{\mathrm{G}} &\equiv rac{K}{2} \int doldsymbol{x} \; |
abla \phi|^2 \end{aligned}$$

(The ϕ -linear must vanish because of the stationary condition of Θ .)

Vortex field Ψ

- Since Θ is a harmonic function, another harmonic function Ψ must exist such that $\partial \Psi / \partial x = -\partial \Theta / \partial y$, and $\partial \Psi / \partial y = \partial \Theta / \partial x$.
- For a region Γ that includes a vortex,

$$egin{array}{ll} \int_{\Gamma} doldsymbol{x} \ riangle \Psi &= \int_{\partial \Gamma} doldsymbol{n} \cdot
abla \Psi \ &= - \int_{\partial \Gamma} doldsymbol{l} \cdot
abla \Theta = -2\pi q \end{array}$$

7 / 30

where $q = \pm 1, \pm 2, \cdots$ is the vortex charge.

• This (together with $riangle \Psi = 0$) means

$$\Delta \Psi = -\sum_{i} 2\pi q_i \delta(\boldsymbol{x} - \boldsymbol{x}_i) = -2\pi \rho_{\rm v}(\boldsymbol{x})$$

Coulomb gas

• Using $G(\boldsymbol{x}) \approx \frac{1}{2\pi} \log \frac{\Lambda}{r}$ that satisfies $\bigtriangleup G(\boldsymbol{x}) = -\delta(\boldsymbol{x})$,

$$\Psi(\boldsymbol{x}) = 2\pi \int d\boldsymbol{y} \, G(\boldsymbol{x} - \boldsymbol{y})
ho_{\mathrm{v}}(\boldsymbol{y}). \quad \left(
ho_{\mathrm{v}}(\boldsymbol{x}) = \sum_{i} q_{i} \delta(\boldsymbol{x} - \boldsymbol{x}_{i})
ight)$$

 \bullet The first term in \mathcal{H}_v can be reformed as 2D Coulomb Gas:

$$\frac{K}{2} \int d\boldsymbol{x} |\nabla \Theta|^2 = \frac{K}{2} \int d\boldsymbol{x} |\nabla \Psi|^2$$

$$= -\frac{K}{2} \int d\boldsymbol{x} \Psi \Delta \Psi = \pi K \int d\boldsymbol{x} \Psi \rho_{\rm v}$$

$$= 2\pi^2 K \int d\boldsymbol{x} d\boldsymbol{y} G(\boldsymbol{x} - \boldsymbol{y}) \rho_{\rm v}(\boldsymbol{x}) \rho_{\rm v}(\boldsymbol{y})$$

$$= 2\pi^2 K \sum_{i,j} G(\boldsymbol{x}_i - \boldsymbol{x}_i) q_i q_j \approx \pi K \sum_{i,j} q_i q_j \log \frac{\Lambda}{|\boldsymbol{x}_i - \boldsymbol{x}_j|} \quad (1)$$

Statistical	Mechanics	I: Lecture 14	

July 15, 2024 9 / 30

Regularization

- In (1), we have infinities for i = j and singularities for $x_i x_j \rightarrow 0$.
- We must recall that our original problem is a lattice problem.
- The lattice version of Green's function has no infinity at r = 0. Therefore, we simply assume G(0) is finite, which allows us to let the i = j terms ($\equiv 2\pi^2 K^2 G(0) \sum_i q_i^2$) absorbed in the μ -term. (We can replace $\sum_i q_i^2$ by N_v because the $|q_i| \ge 2$ terms are energetically and entropically unfavorable and therefore irrelevant.)
- In the lattice model, no two charges can not be close to each other than the lattice constant. Therefore, in (1), we can replace $\sum_{i,j}$ by $2\sum_{(ij)}$ with the condition that the state summation is to be taken over the region where $x_i x_j > a$ for any i, j pair.

Short summary

The XY model Hamiltonian is approximated by $\mathcal{H}_{XY} \approx \mathcal{H}_v + \mathcal{H}_G$ where

$$egin{aligned} \mathcal{H}_{\mathrm{G}} &\equiv rac{K}{2} \int doldsymbol{x} \; |
abla \phi|^2 \ \mathcal{H}_{\mathrm{v}} &pprox \mathcal{H}_{\mathrm{Coulomb}} \equiv 2\pi K \sum_{(ij)} q_i q_j \log rac{\Lambda}{|oldsymbol{x}_i - oldsymbol{x}_j|} + \mu N_{\mathrm{v}} \ \mathcal{H}_{\mathrm{G}} &\equiv rac{K}{2} \int doldsymbol{x} \; |
abla \phi|^2 \end{aligned}$$

with the constraint on the region of the state summation that no two charges do not come closer than the distance a.

Grand partition function (J. M. Kosterlitz: J. Phys. C 7 1046 (1974))

We assume that $q_i = \pm 1$ since vortices $|q_i| > 1$ are energetically and entropically unfavorable and do not contribute. Then, defining

 $g \equiv 2\pi K, \quad \zeta \equiv e^{\mu},$

the grand partition function becomes

$$\begin{split} \Xi(g,\zeta) &= \sum_{N} \frac{\zeta^{2N}}{(N!)^2} \int_{\Omega(a)} dX_N dY_N \, e^{-gV_N(X_N,Y_N)} \\ \Omega(a) &\equiv \{ (X_N,Y_N) \mid \text{any two charges are separated by more than } a \} \\ V_N(X_N,Y_N) &\equiv \sum_{(ij)} v(\boldsymbol{x}_i,\boldsymbol{x}_j) \sum_{(ij)} v(\boldsymbol{y}_i,\boldsymbol{y}_j) - \sum_{ij} v(\boldsymbol{x}_i,\boldsymbol{y}_j) \\ v(\boldsymbol{x},\boldsymbol{y}) &\equiv \log(\Lambda/|\boldsymbol{x}-\boldsymbol{y}|) \end{split}$$

where $X_N \equiv (\boldsymbol{x}_1, \boldsymbol{x}_2, \cdots, \boldsymbol{x}_N)$ and $Y_N \equiv (\boldsymbol{y}_1, \boldsymbol{y}_2, \cdots, \boldsymbol{y}_N)$ are the positions of positive and negative vortices, respectively.

Partial trace over charge pairs of size $r < a' = (1 + \lambda)a$

- In the lowest order, g is unchanged by RGT, because of the character of the logarithmic potential (g log r = g log r' +g log b = g log r' + gλ with no change in the prefactor of log).
- The second-order change in g arises from the partial trace over Ω(a) \Ω(a'). The main contribution is the screening effect by the positive-negative charge pairs with the distance a < r < a'. Therefore, it is proportional to the squared charge density:

$$g' \sim g - \lambda A \zeta^2.$$

(A more detailed derivation will follow.)

Statistical Mechanics I: Lecture 14	July 15, 2024	13 / 30	

Screening effect (A simple derivation)

- In the RG from a to $a' = (1 + \lambda)a$, pairs of opposite charges, i.e., dipoles with moment qa, are traced out, modifying g.
- We can consider g as $g \equiv \beta/\epsilon$ with the inverse temperature β and the dielectric constant ϵ . With no screening, $g = \beta/\epsilon_0$.
- Generally, when the electric field E induces the polarization density P, we get $D \equiv \epsilon E = \epsilon_0 E + P$. Thus, $\Delta \epsilon \equiv \epsilon \epsilon_0 = |P|/|E|$.
- $P = \rho_d \langle d \rangle$ where ρ_d is the density of the charge pairs and d is the dipole moment of a pair.

•
$$\rho(\equiv \text{charge density}) \propto \zeta \Rightarrow \rho_d \sim \rho^2 \int_{a < |\boldsymbol{x} - \boldsymbol{y}| < a(1+\lambda)} d\boldsymbol{x} d\boldsymbol{y} \sim \lambda a^2 \zeta^2$$

•
$$\langle \boldsymbol{d} \rangle \sim \operatorname{Tr}_{\boldsymbol{d}} e^{\beta \boldsymbol{E} \cdot \boldsymbol{d}} \boldsymbol{d} / \operatorname{Tr}_{\boldsymbol{d}} e^{\beta \boldsymbol{E} \cdot \boldsymbol{d}} \sim \beta E d^2 \sim \beta E a^2 q^2$$

• Therefore,
$$\Delta\epsilon = |m{P}|/|m{E}| \sim \lambda eta q^2 a^4 \zeta^2$$
 .

• Therefore, $g' \sim \beta/(\epsilon_0 + \lambda a^4 q^2 \beta \zeta^2) \sim g - \lambda A \zeta^2$ with $A \sim a^4 q^2 g^2$.

Rescaling

- The first factor contributing to ζ' comes from the Jacobian $d(X_N,Y_N)/d(X'_N,Y'_N) = (a'/a)^{2dN}$, which contributes a factor $e^{d\lambda}$ to ζ' .
- The second factor contributing to ζ' comes from the substitution of (X_N, Y_N) by (bX'_N, bY'_N) in the Coulomb interaction. The Hamiltonian has N(N-1) terms like $-g \log(x_i x_j)$ and N^2 terms like $g \log(x_i y_j)$. When x_i is replaced by bx'_i , each log produces λ because $\log(x_i x_j) = \log(x'_i x'_j) + \lambda$. Therefore, in total, we have the term $g(-N(N-1) + N^2)\lambda = gN\lambda$ in the rescaled Hamiltonian. This amounts to a factor $e^{-g\lambda/2}$ contributing to ζ' .
- Putting these two factors together,

$$\zeta' = \zeta \times e^{(2-g/2)\lambda}$$

Statistical Mechanics I: Lecture 14

July 15, 2024 15 / 30

RG flow equation

We have obtained the RG flow equations $g' = g - \lambda A \zeta^2$, and $\zeta' = \zeta \times e^{(2-g/2)\lambda}$. It is convenient to use $x \equiv 2 - g/2$ instead of g, and focus on the vicinity of $x = \zeta = 0$.

$$\frac{dx}{d\lambda} = -\frac{1}{2}\frac{dg}{d\lambda} \approx \frac{A}{2}\zeta^2 \quad \text{and} \quad \frac{d\zeta}{d\lambda} = (2 - g/2)\zeta = x\zeta$$

We can remove the factor A/2 by defining $y \equiv \sqrt{A/2}\zeta$. Thus we have obtained the famous RG flow equation of the Kosterlitz-Thouless transition:

$$\begin{cases} \frac{dx}{d\lambda} = y^2 \\ \frac{dy}{d\lambda} = xy \end{cases} \begin{pmatrix} x = 2 - \pi K \\ y = (\text{const}) \times e^{\mu} \end{pmatrix} \quad \text{(Kosterlitz's RG eq.)} \end{cases}$$

RG flow diagram

• We can show that $t \equiv y^2 - x^2$ is the constant of motion of the RG equation

$$\frac{dx}{d\lambda} = y^2, \quad \frac{dy}{d\lambda} = xy.$$

- The value of t depends only on the initial values of the parameter, μ and K = 1/T. Schematically, the initial points are located on the t axis.
- There are two cases: (t < 0) y goes to zero (no vortices) and (t > 0) y goes to infinity (vortex proliferation). The separatorix, t = 0, corresponds to the BKT transition.

Solution and correlation length

- In the case where $t \equiv y^2 x^2 > 0$, $\frac{dx}{d\lambda} = y^2 = t + x^2$. This equation has the solution $x(\lambda) = \sqrt{t} \tan\left(\sqrt{t} (\lambda \lambda_0)\right)$.
- Consider a travel along the RGT flow line with t > 0 from λ = 0 to λ_{*} ≡ log(ξ/a). (ξ is the correlation length.) Before RGT is applied, we know that no parameter is extreme, which means x(0), y(0) ~ O(1). At λ = λ_{*}, the correlation length (= the mean distance between vortices) is a; the vortex density is ~ a⁻², which leads to y(λ_{*}) ~ O(1).
- When $0 < t \ll 1$, these conditions imply that during this travel the argument of tan function varies from somewhere close to $-\pi/2$ to somewhere close to $\pi/2$. This means $\pi = \sqrt{t}\lambda_*$.
- This means that

$$\frac{\xi}{a} \sim e^{\frac{\pi}{\sqrt{t}}} \sim \exp\left(\frac{\text{const}}{\sqrt{T - T_c}}\right). \quad \text{(More divergent than any power-law)}$$

Correlation function below the transition temperature

- When $T < T_c$, the system flows to the vortex free states, i.e., it is asymptotically described by the Gaussian fixed-point Hamiltonian.
- Therefore, the 2-point correlation function is

$$\langle S^{x}(\boldsymbol{x})S^{x}(\boldsymbol{y}) + S^{y}(\boldsymbol{x})S^{y}(\boldsymbol{y}) \rangle = \langle e^{i(\phi(\boldsymbol{x}) - \phi(\boldsymbol{y}))} \rangle$$

= $Z_{\mathrm{G}}^{-1} \int d\boldsymbol{\phi} \, e^{-\frac{K}{2}(\nabla \phi) \cdot (\nabla \phi) - i\boldsymbol{\omega} \cdot \boldsymbol{\phi}} = Z_{\mathrm{G}}^{-1} \int d\boldsymbol{\phi} \, e^{\frac{K}{2} \boldsymbol{\phi}^{\mathsf{T}} \Delta \boldsymbol{\phi} - i\boldsymbol{\omega} \cdot \boldsymbol{\phi}}$

where $\omega(\boldsymbol{x}) \equiv 1$, $\omega(\boldsymbol{y}) \equiv -1$, and $\omega(\boldsymbol{r}) \equiv 0$ everywhere else. Because of the relation between the lattice Laplacian and the lattice Green's function, $\Delta = -G^{-1}$, and $G(\boldsymbol{x}, \boldsymbol{y}) \sim 1/(2\pi) \log(\Lambda/|\boldsymbol{x} - \boldsymbol{y}|)$, the equation can be continued by Gaussian integras as

$$= e^{-\frac{1}{2K}\boldsymbol{\omega}^{\mathsf{T}} G \boldsymbol{\omega}} = e^{-\frac{1}{K}(G(0) - G(r))} \propto r^{-\frac{1}{2\pi K}}.$$

• The correlation decays algebraically not only at the transition point but also any temperature below.

Universal jump

 $\bullet\,$ Thus, we have obtained the correlation function $\sim r^{-\eta}$ with

$$\eta = \frac{1}{2\pi K} = \frac{k_{\rm B}T}{2\pi J}.$$

This type of correlation is called "quasi-long-range order".

- In particular, at the transition point, $K_c \equiv \frac{2}{\pi}$, the exponent takes a universal value, $\eta(K = K_c) = 1/4$.
- In the context of 2D superfluidity, when it is finite, the superfulid density $\rho_{\rm s}$ is related to K as

$$K = \frac{\hbar^2 \rho_{\rm s}}{m k_{\rm B} T} \quad {\rm or} \quad \rho_{\rm s} = \frac{m k_{\rm B} T}{2 \pi \hbar^2 \eta}$$

where m is the mass of a constituent particle. Therefore, at the BKT transition, ρ_s jump from 0 to the universal magnitude $\frac{2mk_BT}{\pi\hbar^2}$.

Summary

- The XY model is mapped to a composite system of vortices and fluctuations.
- The vortices behave as a 2D Coulomb gas.
- The fluctuations are governed by the massless Gaussian model.
- The RGT to the 2D Coulomb gas yields a set of RG flow equation.
- Above the transition temperature, the correlation length diverges as $\xi \sim \exp(c/\sqrt{T-T_c})$.
- Below the transition temperature, the system flows into the vortex-less Gaussian FP, where the spin-spin correlation obeys power-law with the exponent η varying with temperature.
- Its value is 1/4 at the transition point. This means the universal jump in the superfluid density.

July 15, 2024 21 / 30

Supplement: The original derivation (Kosterlitz: J.Phys.C7 1046 (1974))

- In what follows, we assume that $q_i = \pm 1$ since vortices $|q_i| > 1$ are energetically unfavorable and would not yield dominant contribution.
- $X_N \equiv (\boldsymbol{x}_1, \boldsymbol{x}_2, \cdots, \boldsymbol{x}_N)$ and $Y_N \equiv (\boldsymbol{y}_1, \boldsymbol{y}_2, \cdots, \boldsymbol{y}_N)$ are the positions of positive and negative vortices, respectively.
- Then, the grand partition function is

$$\begin{split} \Xi(g,\zeta) &= \sum_{N} \frac{\zeta^{2N}}{(N!)^2} Z_N^a(g) \quad (\zeta \equiv e^{\mu}) \\ Z_N^a(g) &\equiv \int_{\Omega(a)} dX_N dY_N \, e^{-gV_N(X_N,Y_N)} \quad (g \equiv 2\pi K) \\ \Omega(a) &\equiv \{ (X_N,Y_N) \mid \text{Any two elements are apart by more than } a \} \\ V_N(X_N,Y_N) &\equiv -\sum_{(ij)} (v(\boldsymbol{x}_i,\boldsymbol{x}_j) + v(\boldsymbol{y}_i,\boldsymbol{y}_j)) + \sum_{ij} v(\boldsymbol{x}_i,\boldsymbol{y}_j) \\ v(\boldsymbol{x},\boldsymbol{y}) &\equiv \log(|\boldsymbol{x}-\boldsymbol{y}|/\Lambda) \end{split}$$

Supplement: Partial trace — Increasing the cut-off a

- Following the general program of the RGT, we first want to take the partial trace with respect to the short-scale degrees of freedom.
- We take the partial integral over the region $\Delta\Omega(a) \equiv \Omega(a) \Omega(a')$ where $a' \equiv (1 + \lambda)a$.
- The region consists of 3 components:

$$\begin{split} \Delta\Omega(a) &\approx \sum_{ij} \Omega_{ij}^{+-}(a') + \sum_{(ij)} (\Omega_{ij}^{++}(a') + \Omega_{ij}^{--}(a')) \\ \Omega_{ij}^{+-}(a') &\equiv \{ (X_N, Y_N) \in \Omega(a) \mid \\ \text{All pairs are separated by more than } a', \\ \text{except } a < |\boldsymbol{x}_i - \boldsymbol{y}_j| < a'. \} \end{split}$$

$$\Omega_{ij}^{++}(a')\equiv\cdots$$

Statistical Mechanics I: Lecture 14

July 15, 2024 23 / 30

Supplement: Partial trace — Dipole-mediated interaction

The contribution from Ω^{+-} should be dominant.

$$\begin{split} Z_{N}^{a} - Z_{N}^{a'} &\approx \sum_{ij} \int_{\Omega_{ij}^{+-}(a')} dX_{N} dY_{N} e^{-gV_{N}} = N^{2} \int_{\Omega_{NN}^{+-}(a')} dX_{N} dY_{N} e^{-gV_{N}} \\ &= N^{2} \int_{\Omega(a')} dX_{N-1} dY_{N-1} e^{-gV_{N-1}} \int dx_{N} dy_{N} e^{-g\sum_{i} [\Delta v(\boldsymbol{x}_{i}) - \Delta v(\boldsymbol{y}_{i})]} \\ &\quad (\Delta v(\boldsymbol{x}_{i}) \equiv v(\boldsymbol{x}_{i}, \boldsymbol{y}_{N}) - v(\boldsymbol{x}_{i}, \boldsymbol{x}_{N})) \\ &\approx N^{2} \int_{\Omega(a')} dX_{N-1} dY_{N-1} e^{-gV_{N-1}} \\ &\quad \times \int dx_{N} dy_{N} \left\{ 1 + \frac{g^{2}}{2} \left(\sum_{i=1}^{N-1} (\Delta v(\boldsymbol{x}_{i}) - \Delta v(\boldsymbol{y}_{i})) \right)^{2} \right\} \\ &\approx N^{2} \int_{\Omega(a')} dX_{N-1} dY_{N-1} e^{-gV_{N-1}} \times \left(2\# d^{2}/\lambda \# + 4\pi^{2} a^{4} \lambda g^{2} V_{N-1} \right) \end{split}$$

(contribution to the regular part is omitted)

Supplement: Partial trace — Screening effect

$$\begin{split} \Xi(g,\zeta) &= \sum_{N} \frac{\zeta^{2N}}{(N!)^2} Z_N^a(g) \\ &\approx \sum_{N} \frac{\zeta^{2N}}{(N!)^2} \left(Z_N^{a'}(g) + N^2 \int_{\Omega(a')} dX_{N-1} dY_{N-1} e^{-gV_{N-1}} \gamma g^2 \lambda V_{N-1} \right) \\ &\quad (\gamma \equiv 4\pi^2 a^4; \ (N-1) \to N) \\ &= \sum_{N} \frac{\zeta^{2N}}{(N!)^2} \int_{\Omega(a')} dX_N dY_N e^{-gV_N} \left(1 + \gamma g^2 \lambda \zeta^2 V_N \right) \\ &\approx \sum_{N} \frac{\zeta^{2N}}{(N!)^2} \int_{\Omega(a')} dX_N dY_N e^{-(g-\gamma g^2 \lambda \zeta^2) V_N} \end{split}$$

The 2nd order perturbation screens the Coulomb interaction

Statistical Mechanics I: Lecture 14 July 1

July 15, 2024 25 / 30

Supplement: Rescaling of the interaction

We rescale the length so that a' comes back to a.

$$oldsymbol{x}_i' = rac{a}{a'} oldsymbol{x}_i = e^{-\lambda} oldsymbol{x}_i$$

By this replacement, the interaction becomes

$$\begin{split} V_N(X_N, Y_N) \\ &= \sum_{(ij)} \left(\log \frac{\Lambda}{\boldsymbol{x}_i - \boldsymbol{x}_j} + \log \frac{\Lambda}{\boldsymbol{y}_i - \boldsymbol{y}_j} \right) - \sum_{ij} \log \frac{\Lambda}{\boldsymbol{x}_i - \boldsymbol{y}_j} \\ &= \sum_{(ij)} \left(\log \frac{\Lambda}{(\boldsymbol{x}'_i - \boldsymbol{x}'_j)} + \log \frac{\Lambda}{(\boldsymbol{y}'_i - \boldsymbol{y}'_j)} - 2\lambda \right) - \sum_{ij} \left(\log \frac{\Lambda}{(\boldsymbol{x}'_i - \boldsymbol{y}'_j)} - \lambda \right) \\ &= V_N(X'_N, Y'_N) + (-N(N-1) + N^2)\lambda = V_N(X'_N, Y'_N) + N\lambda \end{split}$$

Note that we do not have any rescaling factor in front of $V_N(X'_N, Y'_N)$ in contrast to the regular perturbation. Because of this, we do not have the linear term in the RG flow equation, i.e., $y_\mu = 0$.

Supplement: Rescaling

Now, we can summarize the RGT as

$$\begin{split} \Xi(g,\zeta) \\ &= \sum_{N} \frac{\zeta^{2N}}{(N!)^2} e^{2dN\lambda} \int_{\Omega(a)} dX'_N dY'_N e^{-(g-\gamma g^2 \zeta^2 \lambda) V_N(X'_N,Y'_N)} e^{-gN\lambda} \\ &= \sum_{N} \frac{1}{(N!)^2} \left(\zeta e^{(d-\frac{g}{2})\lambda} \right)^{2N} \int_{\Omega(a)} dX_N dY_N e^{-(g-\gamma g^2 \zeta^2 \lambda) V_N(X_N,Y_N)} \\ &= \Xi(\zeta',g') \times e^{\text{(regular term)}} \end{split}$$

where

$$\zeta' = \zeta e^{\left(d - \frac{g}{2}\right)\lambda}$$
 and $g' = g - \gamma g^2 \zeta^2 \lambda$

In the form of differential equations,

$$rac{d\zeta}{d\lambda} = \left(2 - rac{g}{2}
ight)\zeta$$
 and $rac{dg}{d\lambda} = -\gamma g^2 \zeta^2$

Statistical Mechanics I: Lecture 14 July 15, 2024

Supplement: Screeing by dimers

$$I \equiv \int_{a < |\boldsymbol{x}_N - \boldsymbol{y}_N| < a'} d\boldsymbol{x} d\boldsymbol{y} \sum_{ij} (\Delta v(\boldsymbol{x}_i) - \Delta v(\boldsymbol{y}_i)) (\Delta v(\boldsymbol{x}_j) - \Delta v(\boldsymbol{y}_j))$$

- We use approximation $\Delta v(\boldsymbol{r}) \equiv \log(\boldsymbol{r} - \boldsymbol{x}_N) - \log(\boldsymbol{r} - \boldsymbol{y}_N), \approx -\frac{\boldsymbol{x}_i - \boldsymbol{x}_N}{|\boldsymbol{x}_i - \boldsymbol{x}_N|^2} \cdot \boldsymbol{d}. \quad (\boldsymbol{d} \equiv \boldsymbol{y}_N - \boldsymbol{x}_N.)$
- Consider a single term

$$\begin{split} I_{ij} &\equiv \int_{a < |\boldsymbol{x}_N - \boldsymbol{y}_N| < a'} d\boldsymbol{x}_N d\boldsymbol{y}_N \sum_{ij} \Delta v(\boldsymbol{x}_i) \Delta v(\boldsymbol{y}_i) \\ &\approx \int d\boldsymbol{x}_N \int_{a < |\boldsymbol{d}| < a'} d\boldsymbol{d} \left(\frac{\boldsymbol{x}_i - \boldsymbol{x}_N}{|\boldsymbol{x}_i - \boldsymbol{x}_N|^2} \cdot \boldsymbol{d} \right) \left(\frac{\boldsymbol{y}_i - \boldsymbol{x}_N}{|\boldsymbol{y}_i - \boldsymbol{x}_N|^2} \cdot \boldsymbol{d} \right) \\ &= 2\pi a^4 \lambda \int d\boldsymbol{x}_N \frac{\boldsymbol{x}_i - \boldsymbol{x}_N}{|\boldsymbol{x}_i - \boldsymbol{x}_N|^2} \cdot \frac{\boldsymbol{y}_i - \boldsymbol{x}_N}{|\boldsymbol{y}_i - \boldsymbol{x}_N|^2} \end{split}$$

27 / 30

Supplement: Screeing by dimers (2)

$$\begin{split} I_{ij}(\boldsymbol{x}_i, \boldsymbol{y}_j) &\approx 2\pi a^4 \lambda \int d\boldsymbol{x}_N \, \frac{\boldsymbol{x}_i - \boldsymbol{x}_N}{|\boldsymbol{x}_i - \boldsymbol{x}_N|^2} \cdot \frac{\boldsymbol{y}_i - \boldsymbol{x}_N}{|\boldsymbol{y}_i - \boldsymbol{x}_N|^2} \\ &\approx 8\pi^2 a^4 \log \frac{L}{|\boldsymbol{x}_i - \boldsymbol{y}_j|} \\ I &= \sum_{ij} (I_{ij}(\boldsymbol{x}_i, \boldsymbol{x}_j) + I_{ij}(\boldsymbol{y}_i, \boldsymbol{y}_j) - I_{ij}(\boldsymbol{x}_i, \boldsymbol{y}_j) - I_{ij}(\boldsymbol{y}_i, \boldsymbol{x}_j)) \\ &= 8\pi^2 a^4 \lambda \left\{ -\sum_{(ij)} (v(\boldsymbol{x}_i, \boldsymbol{x}_j) + v(\boldsymbol{y}_i, \boldsymbol{y}_j)) + \sum_{ij} v(\boldsymbol{x}_i, \boldsymbol{y}_j) \right\} \\ &= 8\pi^2 a^4 \lambda \times V_{N-1}(X_{N-1}, Y_{N-1}) \end{split}$$

Statistical Mechanics I: Lecture 14	July 15, 2024	29 / 30

Supplement: An integral formula

$$I \equiv \int d\mathbf{x} \, \frac{\cos \theta}{R_1 R_2}$$

= $\int d\mathbf{x} \, \frac{R^2 - r^2/4}{((\frac{r}{2})^2 + R^2)^2 - r^2 R^2 \cos^2 \phi}$
$$I = \int_0^L dR \, R \, \frac{R^2 - r^2/4}{4}$$

 $\times \int_0^{2\pi} \frac{d\phi}{(r^2/4 + R^2)^2 - r^2 R^2 \cos^2 \phi}$
= $\int_0^L dR \frac{2\pi R}{R^2 + r^2/4} = \pi \log \frac{L^2 + r^2/4}{r^2/4} \approx 2\pi \log \frac{L}{r}$

$$R_1$$
 R_2
 R_2 R_2
 Y_2 Y_2

We've used
$$\int_0^{2\pi} \frac{d\phi}{a + b\cos^2\phi} = \frac{2\pi}{\sqrt{a(a+b)}}$$