Lecture 14: Berezinskii-Kosterlitz-Thouless transition

Naoki KAWASHIMA

ISSP, U. Tokyo

July 15, 2024

Statistical Mechanics I: Lecture 14 July 15, 2024 1 / 30

XY model in two dimensions

- In two dimensions, continuous spin models cannot have magnetically ordered state with spontaneous symmetry breaking. (Mermin-Wagner theorem)
- \bullet The XY model, however, has a strange type of phase transition that does not break the symmetry. (BKT transition)
- We can understand this transition by mapping the model into the Coulomb gas model. In this mapping, the spin vortices in the XY model corresponds to charges.
- By a RGT, we obtain Kosteritz's RG flow equation, that predicts special characters of the BKT transition.

Mermin-Wagner theorem

Theorem 1 (Mermin-Wagner(1966))

In two dimensions, if the system has a continuous symmetry (represnted by a compact connected Lie group), it cannot be spontaneously broken at any finite temperature. [Pfister, Commun. Math. Phys. 79 181 (1981).]

• Consider the XY model in two dimensions:

$$
\mathcal{H} = -K \sum_{(ij)} \mathbf{S}_i \cdot \mathbf{S}_j = -K \sum_{(ij)} \cos(\theta_i - \theta_j)
$$

where $\boldsymbol{S}_i \equiv (\cos \theta_i, \sin \theta_i)^{\mathsf{T}}$.

- The XY model has the $U(1)$ symmetry with respect to the transformation $\theta_i \rightarrow \theta_i + \alpha$.
- Does the theorem prohibit the phase transition in the XY model?

Statistical Mechanics I: Lecture 14 July 15, 2024 3 / 30

Berezinskii-Kosterlitz-Thouless transition

- A theoretical proposal of a new type of phase transition without spontaneous symmetry breaking. (Berezinskii (1971), Kosterlitz-Thouless (1973))
- Later the predicted transition was discovered in a thin film experiment of superfuid He4. (Bishop-Reppy (1978))

Vortices

- A typical configuration of spins at low temperature consists of a smooth texture with vortices.
- The smooth texture allows the approximation,

$$
\cos(\theta_i - \theta_j) \approx 1 - \frac{1}{2} |\mathbf{r}_{ij} \cdot \nabla \theta|^2
$$

• Therefore, we may switch to continuous space $(*)$

$$
\mathcal{H} = -K \sum_{(ij)} \cos(\theta_i - \theta_j)
$$

$$
\approx \frac{K}{2} \int d\mathbf{x} |\nabla \theta|^2 + \mu N_v
$$

where N_v is the number of vortices and μN_v comes from the "error" of the continuous approximation that is large near the vortices.

(∗) However, we can't forget about the lattice completely as we see later.

Embossed on the souvenir at Prof. Miyashita's retirement party. (June, 2019)

Statistical Mechanics I: Lecture 14 July 15, 2024 5 / 30

Stationary configuration and fluctuation around it

 $\bullet\,$ Here we introduce a new field variable ϕ that is the deviation of $\theta\,$ from its stationary solution Θ for a given vortex configurations:

$$
\theta(\boldsymbol{x}) = \Theta(\boldsymbol{x}) + \phi(\boldsymbol{x}).
$$

• The configuration Θ is determined by the condition that $E[\Theta + \delta \Theta] \geq E[\Theta]$ for any function $\delta \Theta(\boldsymbol{x})$:

$$
0 \le E[\Theta + \delta \Theta] - E[\Theta] = \frac{K}{2} \int dx \left\{ |\nabla(\Theta + \delta \Theta)|^2 - |\nabla \Theta|^2 \right\}
$$

$$
= K \int dx \nabla \Theta \cdot \nabla \delta \Theta = -K \int dx \triangle \Theta \delta \Theta
$$

Therefore, Θ is an harmonic function ($\triangle \Theta = 0$ except at vortices).

 \bullet Θ can be uniquely determined (except for the gauge degrees of freedom) by the vortex configuration.

Vortex/fuctuation separation

 \bullet Using Θ , we can separate the vortices from the Gaussian fluctuation:

$$
\mathcal{H} = \frac{K}{2} \int d\boldsymbol{x} \, |\nabla(\Theta + \phi)|^2 + \mu N_v = \mathcal{H}_v + \mathcal{H}_G.
$$

where

$$
\mathcal{H}_{\rm v} \equiv \frac{K}{2} \int d\boldsymbol{x} \, |\nabla \Theta|^2 + \mu N_{\rm v}
$$

$$
\mathcal{H}_{\rm G} \equiv \frac{K}{2} \int d\boldsymbol{x} \, |\nabla \phi|^2
$$

(The ϕ -linear must vanish because of the stationary condition of Θ .)

Vortex field Ψ

- Since Θ is a harmonic function, another harmonic function Ψ must exist such that $\frac{\partial \Psi}{\partial x} = -\frac{\partial \Theta}{\partial y}$, and $\frac{\partial \Psi}{\partial y} = \frac{\partial \Theta}{\partial x}$.
- For a region Γ that includes a vortex,

$$
\int_{\Gamma} d\boldsymbol{x} \, \triangle \Psi = \int_{\partial \Gamma} d\boldsymbol{n} \cdot \nabla \Psi
$$
\n
$$
= -\int_{\partial \Gamma} d\boldsymbol{l} \cdot \nabla \Theta = -2\pi q
$$

where $q = \pm 1, \pm 2, \cdots$ is the vortex charge.

• This (together with $\Delta \Psi = 0$) means

$$
\triangle \Psi = -\sum_i 2\pi q_i \delta(\boldsymbol{x} - \boldsymbol{x}_i) = -2\pi \rho_\text{v}(\boldsymbol{x})
$$

Coulomb gas

Using $G(\boldsymbol{x}) \approx \frac{1}{2\pi}$ $\frac{1}{2\pi}\log\frac{\Lambda}{r}$ that satisfies $\;\triangle G(\boldsymbol{x})=-\delta(\boldsymbol{x}),$

$$
\Psi(\boldsymbol{x}) = 2\pi \int d\boldsymbol{y} \, G(\boldsymbol{x} - \boldsymbol{y}) \rho_{\rm v}(\boldsymbol{y}). \quad \left(\rho_{\rm v}(\boldsymbol{x}) = \sum_{i} q_i \delta(\boldsymbol{x} - \boldsymbol{x}_i) \right)
$$

• The first term in $\mathcal{H}_{\rm v}$ can be reformed as 2D Coulomb Gas:

$$
\frac{K}{2} \int dx \, |\nabla \Theta|^2 = \frac{K}{2} \int dx \, |\nabla \Psi|^2
$$
\n
$$
= -\frac{K}{2} \int dx \, \Psi \triangle \Psi = \pi K \int dx \, \Psi \rho_v
$$
\n
$$
= 2\pi^2 K \int dx dy \, G(x - y) \rho_v(x) \rho_v(y)
$$
\n
$$
= 2\pi^2 K \sum_{i,j} G(x_i - x_i) q_i q_j \approx \pi K \sum_{i,j} q_i q_j \log \frac{\Lambda}{|\mathbf{x}_i - \mathbf{x}_j|} \tag{1}
$$

July 15, 2024 $9 / 30$

Regularization

- \bullet In (1), we have infinities for $i = j$ and singularities for $\boldsymbol{x}_i \boldsymbol{x}_j \rightarrow 0.$
- We must recall that our original problem is a lattice problem.
- $\bullet\,$ The lattice version of Green's function has no infinity at $r=0.$ Therefore, we simply assume $G(0)$ is finite, which allows us to let the $i=j$ terms $(\equiv 2\pi^2 K^2 G(0)\sum_i q_i^2$ \hat{i}^2_i) absorbed in the μ -term. (We can replace $\sum_i q_i^2$ $_i^2$ by N_v because the $|q_i|\geq 2$ terms are energetically and entropically unfavorable and therefore irrelevant.)
- In the lattice model, no two charges can not be close to each other than the lattice constant. Therefore, in (1), we can replace $\sum_{i,j}$ by $2\sum_{(ij)}$ with the condition that the state summation is to be taken over the region where $x_i - x_j > a$ for any i, j pair.

Short summary

The XY model Hamiltonian is approximated by $\mathcal{H}_{XY} \approx \mathcal{H}_{V} + \mathcal{H}_{G}$ where

$$
\mathcal{H}_{\rm G} \equiv \frac{K}{2} \int d\boldsymbol{x} \, |\nabla \phi|^2
$$

$$
\mathcal{H}_{\rm v} \approx \mathcal{H}_{\rm Coulomb} \equiv 2\pi K \sum_{(ij)} q_i q_j \log \frac{\Lambda}{|\boldsymbol{x}_i - \boldsymbol{x}_j|} + \mu N_{\rm v}
$$

$$
\mathcal{H}_{\rm G} \equiv \frac{K}{2} \int d\boldsymbol{x} \, |\nabla \phi|^2
$$

with the constraint on the region of the state summation that no two charges do not come closer than the distance a .

Grand partition function (J. M. Kosterlitz: J. Phys. C 7 1046 (1974))

We assume that $q_i=\pm 1$ since vortices $|q_i|>1$ are energetically and entropically unfavorable and do not contribute. Then, defining

 $g \equiv 2\pi K, \quad \zeta \equiv e^{\mu},$

the grand partition function becomes

$$
\Xi(g,\zeta) = \sum_{N} \frac{\zeta^{2N}}{(N!)^2} \int_{\Omega(a)} dX_N dY_N e^{-gV_N(X_N,Y_N)}
$$

\n
$$
\Omega(a) \equiv \{ (X_N, Y_N) \mid \text{any two charges are separated by more than } a \}
$$

\n
$$
V_N(X_N, Y_N) \equiv \sum_{(ij)} v(\boldsymbol{x}_i, \boldsymbol{x}_j) \sum_{(ij)} v(\boldsymbol{y}_i, \boldsymbol{y}_j) - \sum_{ij} v(\boldsymbol{x}_i, \boldsymbol{y}_j)
$$

\n
$$
v(\boldsymbol{x}, \boldsymbol{y}) \equiv \log(\Lambda/|\boldsymbol{x} - \boldsymbol{y}|)
$$

where $X_N \equiv (\boldsymbol{x}_1, \boldsymbol{x}_2, \cdots, \boldsymbol{x}_N)$ and $Y_N \equiv (\boldsymbol{y}_1, \boldsymbol{y}_2, \cdots, \boldsymbol{y}_N)$ are the positions of positive and negative vortices, respectively.

Partial trace over charge pairs of size $r < a' = (1 + \lambda)a$

- \bullet In the lowest order, g is unchanged by RGT, because of the character of the logarithmic potential ($g \log r = g \log r'$ $+g \log b = g \log r' + g \lambda$ with no change in the prefactor of log).
- \bullet The second-order change in q arises from the partial trace over $\Omega(a) \setminus \Omega(a').$ The main contribution is the screening effect by the positive-negative charge pairs with the distance $a < r < a'$. Therefore, it is proportional to the squared charge density:

$$
g' \sim g - \lambda A \zeta^2.
$$

(A more detailed derivation will follow.)

Statistical Mechanics I: Lecture 14 July 15, 2024 13 / 30

Screening effect (A simple derivation)

- In the RG from a to $a' = (1 + \lambda)a$, pairs of opposite charges, i.e., dipoles with moment qa , are traced out, modifying q .
- We can consider g as $g \equiv \beta/\epsilon$ with the inverse temperature β and the dielectric constant ϵ . With no screening, $g = \beta/\epsilon_0$.
- Generally, when the electric field E induces the polarization density P, we get $D \equiv \epsilon E = \epsilon_0 E + P$. Thus, $\Delta \epsilon \equiv \epsilon - \epsilon_0 = |P|/|E|$.
- \bullet $\bm{P} = \rho_d \langle \bm{d} \rangle$ where ρ_d is the density of the charge pairs and \bm{d} is the dipole moment of a pair.

•
$$
\rho(\equiv \text{charge density}) \propto \zeta \Rightarrow \rho_d \sim \rho^2 \int_{a < |\boldsymbol{x} - \boldsymbol{y}| < a(1+\lambda)} d\boldsymbol{x} d\boldsymbol{y} \sim \lambda a^2 \zeta^2
$$

•
$$
\langle d \rangle \sim \text{Tr} e^{\beta E \cdot d} d / \text{Tr} e^{\beta E \cdot d} \sim \beta E d^2 \sim \beta E a^2 q^2
$$

• Therefore,
$$
\Delta \epsilon = |\boldsymbol{P}| / |\boldsymbol{E}| \sim \lambda \beta q^2 a^4 \zeta^2
$$
.

Therefore, $g' \sim \beta/(\epsilon_0 + \lambda a^4 q^2 \beta \zeta^2) \sim g - \lambda A \zeta^2$ with $A \sim a^4 q^2 g^2$.

Rescaling

- The first factor contributing to ζ' comes from the Jacobian $d(X_N,Y_N)/d(X_N',Y_N')=(a'/a)^{2dN}$, which contributes a factor $e^{d\lambda}$ to ζ' .
- The second factor contributing to ζ' comes from the substitution of (X_N,Y_N) by (bX'_N,bY'_N) in the Coulomb interaction. The Hamiltonian has $N(N-1)$ terms like $-g\log(\boldsymbol{x}_i-\boldsymbol{x}_j)$ and N^2 terms like $g\log(\boldsymbol{x}_i-\boldsymbol{y}_j)$. When \boldsymbol{x}_i is replaced by $b\boldsymbol{x}'_i$ $_i^\prime$, each \log produces λ because $\log(\boldsymbol{x}_i-\boldsymbol{x}_j) = \log(\boldsymbol{x}'_i-\boldsymbol{x}'_j)$ $\lambda'_{j})+\lambda$. Therefore, in total, we have the term $g(-N(N-1)+N^2)\lambda=gN\lambda$ in the rescaled Hamiltonian. This amounts to a factor $e^{-g\lambda/2}$ contributing to $\zeta'.$
- Putting these two factors together,

$$
\zeta' = \zeta \times e^{(2-g/2)\lambda}
$$

Statistical Mechanics I: Lecture 14 July 15, 2024 15 / 30

RG flow equation

We have obtained the RG flow equations $\;g'=g-\lambda A\zeta^2$, and $\zeta'=\zeta\times e^{(2-g/2)\lambda}$. It is convenient to use $x\equiv 2-g/2$ instead of g , and focus on the vicinity of $x = \zeta = 0$.

$$
\frac{dx}{d\lambda} = -\frac{1}{2}\frac{dg}{d\lambda} \approx \frac{A}{2}\zeta^2 \quad \text{and} \quad \frac{d\zeta}{d\lambda} = (2 - g/2)\zeta = x\zeta
$$

We can remove the factor $A/2$ by defining $y\equiv \sqrt{A/2}\zeta$. Thus we have obtained the famous RG flow equation of the Kosterlitz-Thouless transition:

$$
\begin{cases}\n\frac{dx}{d\lambda} = y^2 \\
\frac{dy}{d\lambda} = xy\n\end{cases}\n\begin{pmatrix}\nx = 2 - \pi K \\
y = (\text{const}) \times e^{\mu}\n\end{pmatrix}\n\quad \text{(Kosterlitz's RG eq.)}
$$

RG flow diagram

We can show that $t\equiv y^2-x^2$ is the constant of motion of the RG equation

$$
\frac{dx}{d\lambda} = y^2, \quad \frac{dy}{d\lambda} = xy.
$$

- \bullet The value of t depends only on the initial values of the parameter, μ and $K = 1/T$. Schematically, the initial points are located on the t axis.
- There are two cases: $(t < 0)$ y goes to zero (no vortices) and $(t > 0)$ y goes to infinity (vortex proliferation). The separatorix, $t = 0$, corresponds to the BKT transition.

Solution and correlation length

- In the case where $t\equiv y^2-x^2>0, \ \ \frac{dx}{dy}$ $\frac{dx}{d\lambda} = y^2 = t + x^2$. This equation has the solution $\ x(\lambda) = \sqrt{t} \ \tan \left(\sqrt{t} \ (\lambda-\lambda_0) \right).$
- Consider a travel along the RGT flow line with $t > 0$ from $\lambda = 0$ to $\lambda_* \equiv \log(\xi/a)$. (ξ is the correlation length.) Before RGT is applied, we know that no parameter is extreme, which means $x(0), y(0) \sim \mathcal{O}(1)$. At $\lambda = \lambda_*$, the correlation length (= the mean distance between vortices) is a ; the vortex density is $\sim a^{-2}$, which leads to $y(\lambda_*)\thicksim O(1).$
- When $0 < t \ll 1$, these conditions imply that during this travel the argument of \tan function varies from somewhere close to $-\pi/2$ to somewhere close to $\pi/2.$ This means $\pi=\surd t\lambda_*.$
- $\bullet\,$ This means that

$$
\frac{\xi}{a} \sim e^{\frac{\pi}{\sqrt{t}}} \sim \exp\left(\frac{\text{const}}{\sqrt{T-T_c}}\right). \quad \text{(More divergent than any power-law)}
$$

Correlation function below the transition temperature

- When $T < T_c$, the system flows to the vortex free states, i.e., it is asymptotically described by the Gaussian fixed-point Hamiltonian.
- **•** Therefore, the 2-point correlation function is

$$
\langle S^x(\mathbf{x})S^x(\mathbf{y}) + S^y(\mathbf{x})S^y(\mathbf{y}) \rangle = \langle e^{i(\phi(\mathbf{x}) - \phi(\mathbf{y}))} \rangle
$$

= $Z_G^{-1} \int d\phi \, e^{-\frac{K}{2}(\nabla\phi) \cdot (\nabla\phi) - i\boldsymbol{\omega} \cdot \phi} = Z_G^{-1} \int d\phi \, e^{\frac{K}{2}\phi^T\Delta\phi - i\boldsymbol{\omega} \cdot \phi}$

where $\omega(\boldsymbol{x}) \equiv 1$, $\omega(\boldsymbol{y}) \equiv -1$, and $\omega(\boldsymbol{r}) \equiv 0$ everywhere else. Because of the relation between the lattice Laplacian and the lattice Green's function, $\Delta = -G^{-1}$, and $G(\bm{x},\bm{y}) \sim 1/(2\pi)\log(\Lambda/|\bm{x}-\bm{y}|)$, the equation can be continued by Gaussian integras as

$$
= e^{-\frac{1}{2K}\omega^{\mathsf{T}}G\omega} = e^{-\frac{1}{K}(G(0) - G(r))} \propto r^{-\frac{1}{2\pi K}}.
$$

• The correlation decays algebraically not only at the transition point but also any temperature below.

Statistical Mechanics I: Lecture 14 July 15, 2024 19 / 30

Universal jump

Thus, we have obtained the correlation function $\sim r^{-\eta}$ with

$$
\eta = \frac{1}{2\pi K} = \frac{k_{\rm B}T}{2\pi J}.
$$

This type of correlation is called "quasi-long-range order".

- In particular, at the transition point, $K_c \equiv \frac{2}{\pi}$ $\frac{2}{\pi}$, the exponent takes a universal value, $\eta(K=K_c)=1/4.$
- In the context of 2D superfluidity, when it is finite, the superfulid density $\rho_{\rm s}$ is related to K as

$$
K=\frac{\hbar^2\rho_{\rm s}}{mk_{\rm B}T} \quad \text{or} \quad \rho_{\rm s}=\frac{mk_{\rm B}T}{2\pi\hbar^2\eta}
$$

where m is the mass of a constituent particle. Therefore, at the BKT transition, $\rho_{\rm s}$ jump from 0 to the universal magnitude $\frac{2 m k_{\rm B} T}{\pi \hbar^2}$.

Summary

- \bullet The XY model is mapped to a composite system of vortices and fuctuations.
- The vortices behave as a 2D Coulomb gas.
- The fluctuations are governed by the massless Gaussian model.
- The RGT to the 2D Coulomb gas yields a set of RG flow equation.
- Above the transition temperature, the correlation length diverges as Above the transition ($\xi \sim \exp(c/\sqrt{T-T_c}).$
- Below the transition temperature, the system flows into the vortex-less Gaussian FP, where the spin-spin correlation obeys power-law with the exponent η varying with temperature.
- \bullet Its value is $1/4$ at the transition point. This means the universal jump in the superfluid density.

Supplement: The original derivation (Kosterlitz: J.Phys.C7 1046 (1974))

- In what follows, we assume that $q_i=\pm 1$ since vortices $|q_i|>1$ are energetically unfavorable and would not yield dominant contribution.
- \bullet $X_N \equiv (\boldsymbol{x}_1, \boldsymbol{x}_2, \cdots, \boldsymbol{x}_N)$ and $Y_N \equiv (\boldsymbol{y}_1, \boldsymbol{y}_2, \cdots, \boldsymbol{y}_N)$ are the positions of positive and negative vortices, respectively.
- Then, the grand partition function is

$$
\Xi(g,\zeta) = \sum_{N} \frac{\zeta^{2N}}{(N!)^2} Z_N^a(g) \quad (\zeta \equiv e^{\mu})
$$

\n
$$
Z_N^a(g) \equiv \int_{\Omega(a)} dX_N dY_N e^{-gV_N(X_N,Y_N)} \quad (g \equiv 2\pi K)
$$

\n
$$
\Omega(a) \equiv \{ (X_N, Y_N) \mid \text{Any two elements are apart by more than } a \}
$$

\n
$$
V_N(X_N, Y_N) \equiv -\sum_{(ij)} (v(x_i, x_j) + v(y_i, y_j)) + \sum_{ij} v(x_i, y_j)
$$

\n
$$
v(x, y) \equiv \log(|x - y|/\Lambda)
$$

Supplement: Partial trace $-$ Increasing the cut-off a

- Following the general program of the RGT, we first want to take the partial trace with respect to the short-scale degrees of freedom.
- We take the partial integral over the region $\Delta\Omega(a)\equiv\Omega(a)-\Omega(a')$ where $a'\equiv(1+\lambda)a$.
- The region consists of 3 components:

$$
\Delta\Omega(a) \approx \sum_{ij} \Omega_{ij}^{+-}(a') + \sum_{(ij)} (\Omega_{ij}^{++}(a') + \Omega_{ij}^{--}(a'))
$$

$$
\Omega_{ij}^{+-}(a') \equiv \{ (X_N, Y_N) \in \Omega(a) \mid
$$

All pairs are separated by more than a' ,

except
$$
a < |\boldsymbol{x}_i - \boldsymbol{y}_j| < a'
$$
.
 $\Omega_{ij}^{++}(a') \equiv \cdots$

Statistical Mechanics I: Lecture 14 July 15, 2024 23 / 30

Supplement: Partial trace — Dipole-mediated interaction

The contribution from Ω^{+-} should be dominant.

$$
Z_N^a - Z_N^{a'} \approx \sum_{ij} \int_{\Omega_{ij}^{+-}(a')} dX_N dY_N e^{-gV_N} = N^2 \int_{\Omega_{NN}^{+-}(a')} dX_N dY_N e^{-gV_N}
$$

\n
$$
= N^2 \int_{\Omega(a')} dX_{N-1} dY_{N-1} e^{-gV_{N-1}} \int_{a < |\mathbf{x}_N - \mathbf{y}_N| < a'} d\mathbf{x}_N dy_N e^{-gV_N}
$$

\n
$$
(\Delta v(\mathbf{x}_i) \equiv v(\mathbf{x}_i, \mathbf{y}_N) - v(\mathbf{x}_i, \mathbf{x}_N))
$$

\n
$$
\approx N^2 \int_{\Omega(a')} dX_{N-1} dY_{N-1} e^{-gV_{N-1}}
$$

\n
$$
\times \int_{a < |\mathbf{x}_N - \mathbf{y}_N| < a'} \left\{ 1 + \frac{g^2}{2} \left(\sum_{i=1}^{N-1} (\Delta v(\mathbf{x}_i) - \Delta v(\mathbf{y}_i)) \right)^2 \right\}
$$

\n
$$
\approx N^2 \int_{\Omega(a')} dX_{N-1} dY_{N-1} e^{-gV_{N-1}} \times \left(2\pi \int_{a}^{\Delta} dA/\Delta u + \pi^2 a^4 \Delta u + \pi^2 a^4 \Delta u + \pi^2 a^4 \Delta u
$$

(contribution to the regular part is omitted)

Supplement: Partial trace - Screening effect

$$
\begin{split} \Xi(g,\zeta) &= \sum_{N} \frac{\zeta^{2N}}{(N!)^2} Z_N^a(g) \\ &\approx \sum_{N} \frac{\zeta^{2N}}{(N!)^2} \left(Z_N^{a'}(g) + N^2 \int_{\Omega(a')} dX_{N-1} dY_{N-1} \, e^{-gV_{N-1}} \gamma g^2 \lambda V_{N-1} \right) \\ &\quad \left(\gamma \equiv 4\pi^2 a^4; \ (N-1) \to N \right) \\ &= \sum_{N} \frac{\zeta^{2N}}{(N!)^2} \int_{\Omega(a')} dX_N dY_N \, e^{-gV_N} \left(1 + \gamma g^2 \lambda \zeta^2 V_N \right) \\ &\approx \sum_{N} \frac{\zeta^{2N}}{(N!)^2} \int_{\Omega(a')} dX_N dY_N \, e^{-(g-\gamma g^2 \lambda \zeta^2) V_N} \end{split}
$$

The 2nd order perturbation screens the Coulomb interaction

Statistical Mechanics I: Lecture 14 July 15, 2024 25 / 30

Supplement: Rescaling of the interaction

We rescale the length so that a' comes back to $a.$

$$
\boldsymbol{x}_i^\prime = \frac{a}{a^\prime} \, \boldsymbol{x}_i = e^{-\lambda} \boldsymbol{x}_i
$$

By this replacement, the interaction becomes

$$
V_N(X_N, Y_N)
$$

= $\sum_{(ij)} \left(\log \frac{\Lambda}{x_i - x_j} + \log \frac{\Lambda}{y_i - y_j} \right) - \sum_{ij} \log \frac{\Lambda}{x_i - y_j}$
= $\sum_{(ij)} \left(\log \frac{\Lambda}{(x'_i - x'_j)} + \log \frac{\Lambda}{(y'_i - y'_j)} - 2\lambda \right) - \sum_{ij} \left(\log \frac{\Lambda}{(x'_i - y'_j)} - \lambda \right)$
= $V_N(X'_N, Y'_N) + (-N(N - 1) + N^2)\lambda = V_N(X'_N, Y'_N) + N\lambda$

Note that we do not have any rescaling factor in front of $V_N(X'_N,Y'_N)$ in contrast to the regular perturbation. Because of this, we do not have the linear term in the RG flow equation, i.e., $y_{\mu} = 0$.

Supplement: Rescaling

Now, we can summarize the RGT as

$$
\begin{split} \Xi(g,\zeta) \\ &= \sum_{N} \frac{\zeta^{2N}}{(N!)^2} e^{2dN\lambda} \int_{\Omega(a)} dX_N' dY_N' \, e^{-(g-\gamma g^2 \zeta^2 \lambda) V_N(X_N',Y_N')} e^{-gN\lambda} \\ &= \sum_{N} \frac{1}{(N!)^2} \left(\zeta e^{(d-\frac{g}{2})\lambda} \right)^{2N} \int_{\Omega(a)} dX_N dY_N \, e^{-(g-\gamma g^2 \zeta^2 \lambda) V_N(X_N,Y_N)} \\ &= \Xi(\zeta',g') \times e^{\text{(regular term)}} \end{split}
$$

where

$$
\zeta' = \zeta e^{\left(d - \frac{g}{2}\right)\lambda} \quad \text{and} \quad g' = g - \gamma g^2 \zeta^2 \lambda
$$

In the form of diferential equations,

$$
\frac{d\zeta}{d\lambda} = \left(2 - \frac{g}{2}\right)\zeta \quad \text{and} \quad \frac{dg}{d\lambda} = -\gamma g^2 \zeta^2
$$

Supplement: Screeing by dimers

$$
I = \int_{a < |\boldsymbol{x}_N - \boldsymbol{y}_N| < a'} d\boldsymbol{x} d\boldsymbol{y} \sum_{ij} (\Delta v(\boldsymbol{x}_i) - \Delta v(\boldsymbol{y}_i)) (\Delta v(\boldsymbol{x}_j) - \Delta v(\boldsymbol{y}_j))
$$

- We use approximation $\Delta v(\bm{r}) \equiv \log(\bm{r}-\bm{x}_N) - \log(\bm{r}-\bm{y}_N), \approx \boldsymbol{x}_i - \boldsymbol{x}_N$ $\frac{\left|\boldsymbol{x}_{i}-\boldsymbol{x}_{N}\right|^{2}}{\left|\boldsymbol{x}_{i}-\boldsymbol{x}_{N}\right|^{2}}\cdot\boldsymbol{d}. \quad(\boldsymbol{d}\equiv\boldsymbol{y}_{N}-\boldsymbol{x}_{N}.)$
- **o** Consider a single term

$$
\begin{aligned} I_{ij} & \equiv \int_{a < \vert \bm{x}_N - \bm{y}_N \vert < a'} d\bm{x}_N d\bm{y}_N \, \sum_{ij} \Delta v(\bm{x}_i) \Delta v(\bm{y}_i) \\ & \approx \int d\bm{x}_N \, \int_{a < \vert \bm{d} \vert < a'} d\bm{d} \, \left(\frac{\bm{x}_i - \bm{x}_N}{\vert \bm{x}_i - \bm{x}_N \vert^2} \cdot \bm{d} \right) \left(\frac{\bm{y}_i - \bm{x}_N}{\vert \bm{y}_i - \bm{x}_N \vert^2} \cdot \bm{d} \right) \\ & = 2 \pi a^4 \lambda \int d\bm{x}_N \, \frac{\bm{x}_i - \bm{x}_N}{\vert \bm{x}_i - \bm{x}_N \vert^2} \cdot \frac{\bm{y}_i - \bm{x}_N}{\vert \bm{y}_i - \bm{x}_N \vert^2} \end{aligned}
$$

Supplement: Screeing by dimers (2)

$$
I_{ij}(\boldsymbol{x}_i, \boldsymbol{y}_j) \approx 2\pi a^4 \lambda \int d\boldsymbol{x}_N \frac{\boldsymbol{x}_i - \boldsymbol{x}_N}{|\boldsymbol{x}_i - \boldsymbol{x}_N|^2} \cdot \frac{\boldsymbol{y}_i - \boldsymbol{x}_N}{|\boldsymbol{y}_i - \boldsymbol{x}_N|^2}
$$

\n
$$
\approx 8\pi^2 a^4 \log \frac{L}{|\boldsymbol{x}_i - \boldsymbol{y}_j|}
$$

\n
$$
I = \sum_{ij} (I_{ij}(\boldsymbol{x}_i, \boldsymbol{x}_j) + I_{ij}(\boldsymbol{y}_i, \boldsymbol{y}_j) - I_{ij}(\boldsymbol{x}_i, \boldsymbol{y}_j) - I_{ij}(\boldsymbol{y}_i, \boldsymbol{x}_j))
$$

\n
$$
= 8\pi^2 a^4 \lambda \left\{ -\sum_{(ij)} (v(\boldsymbol{x}_i, \boldsymbol{x}_j) + v(\boldsymbol{y}_i, \boldsymbol{y}_j)) + \sum_{ij} v(\boldsymbol{x}_i, \boldsymbol{y}_j) \right\}
$$

\n
$$
= 8\pi^2 a^4 \lambda \times V_{N-1}(X_{N-1}, Y_{N-1})
$$

Supplement: An integral formula

$$
I = \int dx \frac{\cos \theta}{R_1 R_2}
$$

=
$$
\int dx \frac{R^2 - r^2/4}{((\frac{r}{2})^2 + R^2)^2 - r^2 R^2 \cos^2 \phi}
$$

$$
I = \int_0^L dR R \frac{R^2 - r^2/4}{4}
$$

$$
\times \int_0^{2\pi} \frac{d\phi}{(r^2/4 + R^2)^2 - r^2 R^2 \cos^2 \phi}
$$

$$
= \int_0^L dR \frac{2\pi R}{R^2 + r^2/4} = \pi \log \frac{L^2 + r^2/4}{r^2/4} \approx 2\pi \log \frac{L}{r}
$$

We've used
$$
\int_0^{2\pi} \frac{d\phi}{a + b \cos^2 \phi} = \frac{2\pi}{\sqrt{a(a+b)}}.
$$

