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In this lecture, we see ...

It is not only O(n) models that we can study by considering the
multiple-component field. We can deal with anisotropies as well.
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Cubic anisotropy

Real magnetic systems can never be truely isotropic because spins are
coupled with orbital degrees of freedom that are subject to the
influence of the lattice.

In the case of the cubic lattice, for example, the localized spins feel
the anisotropy field that has the same symmetry as the cubic lattice.
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Decoupled Ising fixed point

To understand why this term represents the
effect of the cubic lattice, consider the case
where v → ∞. In this limit, the spin has to
point to one of the corners of the unit cell
(cube).

Note that in this limit, the system becomes
3 decoupled Ising models. We will find a
fixed point corresponding to this limit.
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Scaling operators

For the ϵ-expansion of the systems with the
cubic symmetry, we consider [[· · ·]] of each
term in the Hamiltonian.

t-operator (previously φ2):

φt ≡
∑
α

[[ϕα(x)ϕα(x)]]

u-operator (previously φ4):

φu ≡
∑
αβ

[[ϕα(x)ϕα(x)ϕβ(x)ϕβ(x)]]

v-operator:

φv ≡
∑
α

[[ϕα(x)ϕα(x)ϕα(x)ϕα(x)]]
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OPE

φtφu ≈ · · ·+ 8φu + 4(n+ 2)φt + · · ·

cttu = 4(n+ 2), cutu = 8, cvtu = 0

φtφv ≈ · · ·+ 8φv + 12φt + · · ·

cttv = 12, cutv = 0, cvtv = 8

φuφv ≈ · · ·+ 24φu + 48φv + 96φt + · · ·

ctuv = 96, cuuv = 24, cvuv = 48

φvφv ≈ · · ·+ 72φv + 96φt + · · ·

ctvv = 96, cuvv = 0, cvvv = 72
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RG flow equation

Keeping in mind that u = O(ϵ) and t = O(ϵ2), as before, the part of
the RG flow equation necessary for the lowest order discussion is

dt
dλ = A ≡ 2t− 8(n+ 2)tu− 24tv + · · ·
du
dλ = B ≡ ϵu− 8(n+ 8)u2 − 48uv + · · ·
dv
dλ = C ≡ ϵv − 96uv − 72v2 + · · ·

Note that we have omitted the terms, such as tu in B and u2 in A,
that would not contribute to yt, yu, yv at the non-Gaussian FPs.

We have four fixed points:
1 [G] (t, u, v) = (0, 0, 0)
2 [WF] (t, u, v) = (t∗WF, u

∗
WF, 0)

3 [DI] (t, u, v) = (t∗DI, 0, v
∗
DI) (“decoupled Ising FP”)

4 [C] (t, u, v) = (t∗C, u
∗
C, v

∗
C) (“cubic FP”)
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Linearization

In all cases, we have the same form of the linearized RG flow eqs. in
terms of ∆u ≡ (t− t∗, u− u∗, v − v∗)T:

d∆u

dλ
= Y∆u

where Y ≡

 ∂A
∂t

∂A
∂u

∂A
∂v

∂B
∂t

∂B
∂u

∂B
∂v

∂C
∂t

∂C
∂u

∂C
∂v


t∗,u∗,v∗

≡
(

2− 8(n+ 2)u∗ − 24v∗ O(ϵ) O(ϵ)
O(ϵ) ϵ− 16(n+ 8)u∗ − 48v∗ −48u∗

O(ϵ) −96v∗ ϵ− 96u∗ − 144v∗

)
The lower-right 2× 2 sub-matrix is important:

∂(B,C)

∂(u, v)
=

(
ϵ− 16(n+ 8)u∗ − 48v∗ −48u∗

−96v∗ ϵ− 96u∗ − 144v∗

)
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“WF” · · · O(n) Wilson-Fisher FP

Within the manifold of v = 0, obviously, all
results will be the same as before:

t∗WF =
ϵ2

4(n+ 8)2
and u∗WF =

ϵ

8(n+ 8)
.

The (u, v)-part of the Y matrix becomes

∂(B,C)

∂(u, v)
= ϵ×

(
−1 − 6

n+8

0 n−4
n+8

)
The eigenvalues and eigenvectors are

yWF
u ≡ −ϵ · · ·

(
1

0

)
, yWF

v =
n− 4

n+ 8
ϵ · · ·

(
−1
n+2
3

)
Therefore, we have nc ≈ 4 and the WFFP is
stable if n < nc.

Case 1: n < nc

Case 2: n > nc
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“DI” · · · Decoupled Ising fixed point

Remembering the RG flow equation for v, we
find a FP with u∗ = 0:

(u∗DI, v
∗
DI) =

(
0,

ϵ

72

)
.

The (u, v)-part of the Y matrix becomes

∂(B,C)

∂(u, v)
=

(
ϵ− 48v∗ 0
−96v∗ ϵ− 144v∗

)
= ϵ ·

(
1/3 0

−4/3 −1

)
The eigenvalues and eigenvectors are

yDI
u ≡ ϵ

3
· · ·

(
1

−1

)
, yDI

t = −ϵ · · ·
(
0

1

)
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“C” · · · Cubic fixed point

Assuming u, v = O(ϵ) and t = O(ϵ2),

(u∗C, v
∗
C) =

(
ϵ

24n
,
(n− 4)ϵ

72n

)
.

The (u, v)-part of the Y matrix becomes

∂(B,C)

∂(u, v)
= − ϵ

3n
·
(

n+ 8 6
4(n− 4) 3(n− 4)

)
The eigenvalues and eigenvectors are

yCw1
= −ϵ · · ·

(
3

n− 4

)
,

yCw2
= −n− 4

3n
ϵ · · ·

(
1

−2

)

Case 1: n < nc

Case 2: n > nc
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Global structure of RG flow

Putting together, we can draw the RG flow
diagram including the 4 fixed points.

n < nc n > nc

u∗ > 0, v∗ < 0 u∗ > 0, v∗ > 0

G yu > 0, yv > 0 yu > 0, yv > 0

WF yu < 0, yv < 0 yu < 0, yv > 0

DI yu > 0, yv < 0 yu > 0, yv < 0

C yw1 < 0, yw1 > 0 yw2 < 0, yw2 < 0

Depending on whether n < nc or n > nc we
can draw two types of the diagram.

So, after all the cubic anisotropy is irrelevant
for real magnetic systems?

Case 1: n < nc

Case 2: n > nc
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Nature of the transition in real magnets

As we have seen above, the value for nc is 4 in the lowest order in the
ϵ-expansion. According to higher order calculations, it turned out to
be close to nc ≈ 3 in 3D. So, there has been a long-standing
controversy about the nature of the ferromagnetic transition under
the cubic anisotropy.

According to a accurate estimation in [Varnashev: PRB 61 14660
(2000)] nc(d = 3) < 3, or more specifically nc(d = 3) = 2.89(2),
which suggests that the cubic anisotropy is relevant for the real
magnets that are approximately represented by the Heisenberg model.

For general discussion see [Calabrese et al: arXiv:cond-mat/0509415].
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Summary

By representing the cubic anisotropy by the term v
∑

α(ϕ
α
i )

4, we have
constructed a field theory that may explain the effect of the lattice
anisotropy on the spin systems that is otherwise symmetric.

The ϵ-expansion of the ϕ4 model with the v term produces a new
fixed point. (Cubic fixed point)

The cubic fixed point is stable for n > nc whereas it is unstable for
n < nc, where nc = 4 +O(ϵ).

According to a more sophisticated numerical estimate, nc in 3D is
slightly below 3, which suggests that we cannot simply neglect the
cubic anisotropy in 3D.

However, the critical region may be narrow in real systems due to
smallness of the cubic anisotropy field and the proximity of nc to 3.
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Exercise 12.1: Consider the critical point of the Heisenberg model.
Discuss the effect of the uniaxial symmetry breaking-field that is
represented by adding the term

−D

[
(Sz

i )
2 − 1

2
((Sx

i )
2 + (Sy

i )
2)

]
to the isotropic Hamiltonian, i.e., the regular Heisenberg model.
(Consider the scaling dimension of the scaling operator that corresponds
to the above operator, and obtain its scaling dimension at the
Wilson-Fisher fixed point for n = 3, to the lowest order in ϵ.)
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