Lecture 12: ϵ -expansion and Wilson-Fisher fixed point

Naoki KAWASHIMA

ISSP, U. Tokyo

July 1, 2024

July 1, 2024 $1/23$

In this lecture, we see ...

- By applying the perturbative RG to GFP, we will find a new fixed point near the GFP. (Wilson-Fisher fixed point (WFFP))
- By replacing the GFP and the WFFP by their multi-component counterparts, we can obtain the ϵ -expansion of the universality classes of the XY model ($n = 2$) and of the Heisenberg model ($n = 3$).

Wilson-Fisher fixed point

- By inspecting the RG flow equation around GFP, we can obtain an $\epsilon (\equiv 4 - d)$ dependent fixed point and its scaling properties to the first order in ϵ (ϵ -expansion).
- **•** From this result one can obtain the lowest order approximation to the Wilson-Fisher fixed point, the fixed point that governs the Ising universality class in dimensions $2 < d < 4$.

RG flow equation around GFP

- Now, we are ready to actually compute the RG flow around the GFP searching for a new fixed point for the ϕ^4 model.
- Our tool is the RG flow equation around a fixed point.

$$
\frac{dg_n}{d\lambda} = y_n g_n - \sum_{lm} c_{lm}^n g_l g_m + O(g^3) \quad (\lambda \equiv \log b)
$$
 (1)

• For the GFP, we already know

$$
\phi_n \equiv \llbracket \phi^n \rrbracket, \quad y_n = d - x_n, \quad x_n = nx = \frac{n}{2}(d - 2)
$$

$$
c_{lm}^n \equiv {l \choose k} {m \choose k} k! \quad \left(k \equiv \frac{l + m - n}{2} \right) \tag{2}
$$

The Z_2 symmetry

 \bullet Let us focus on the relevant fields at the GFP:

 $h \equiv g_1, \quad t \equiv g_2, \quad v \equiv g_3, \quad u \equiv g_4$

- Note that (1) and (2) ensures that when we start with even fields only, odd fields are not generated by the RGT.
- In addition, we know that the critical point of the Ising model possesses the symmetry with respect to $S \leftrightarrow -S$.
- Therefore, we expect that the fixed point representing the Ising criticality should be found in the "even parity" manifold, i.e., $g_{2n+1}=0$ $(h=v=0)$.

ϵ -expansion

 \bullet In terms of the remaining fields, t and u , the flow equations are

$$
\frac{dt}{d\lambda} = y_t t - c_{tt}^t t^2 - 2c_{tu}^t tu - c_{uu}^t u^2 + O(g^3)
$$
\n(3)

$$
\frac{du}{d\lambda} = y_u u - c_{tt}^u t^2 - 2c_{tu}^u tu - c_{uu}^u u^2 + O(g^3)
$$
\n(4)

with $y_t = 2$ and $y_u = 4 - d \equiv \epsilon$.

- \bullet Hereafter, we regard ϵ as a small quantity.
- Le[t](#page-1-0) (t^*, u^*) be the non-trivial solution to the fixed-point equation, i.e., they are not zero and make the RHSs of (3) and (4) zero.

By considering the order in ϵ , we see $t^* = O(\epsilon^2)$ and $u^* = O(\epsilon)$. (∵ By perturbation assuptio[n, b](#page-2-0)oth u^* and t^* are small. Then, in (3), the only term that can possibely be the same order as t is $u^2.$ Therefore, $t^* \sim u^{*\, 2}.$ With this in mind, inspecting (4) we see that ϵu mus[t b](#page-2-0)e comparable to u^2 , so $u^*\sim O(\epsilon)$.)

General prescription with RG flow equation

Generally, the RG flow equation such as (3) and (4) takes the form $d\mathbf{g}/d\lambda = \mathbf{f}(\mathbf{g})$ where $\mathbf{f}(\cdot)$ is a function that maps p dimensional vector to another p dimensional vector. Once we obtain such a set of RG flow equations, we obtain the fixed point and its scaling properties as follows.

- \textbf{D} Find the solution to $\boldsymbol{f}(\boldsymbol{g}^*) = 0.$ Then, \mathcal{H}_{g^*} is the fixed point Hamiltonian.
- \bullet Linearize the RG flow quation around g^* . Specifically, $d\Delta\bm{g}/d\lambda=Y\Delta\bm{g},\;$ where $\Delta\bm{g}\equiv\bm{g}-\bm{g}^*$ and $Y_{\mu\nu}\equiv df_\mu/dg_\nu|_{\bm{g}=\bm{g}^*}$ is the gradient matrix.
- ${\bf 3}$ Diagonalize Y as $Y=P^{-1}\hat Y P$ with $\hat Y$ being a diagonal matrix whose μ th diagonal element is y_{μ} .
- 4 Then, for the new set of parameters defined as $u \equiv P \Delta g$, we have $du_{\mu}/d\lambda = y_{\mu}u_{\mu}$, which means that u_{μ} is the new scaling field and y_{μ} is the corresponding scaling eigenvalue. (Accordingly, the new scaling operators can be defined as $\psi \equiv (P^{\sf T})^{-1}\phi$.)

Statistical Mechanics I: Lecture 12 July 1, 2024 7 / 23

Wilson-Fisher fixed point

Now, keeping only the terms that can make diference in scaling dimensions in the $O(\epsilon)$ order, we obtain

$$
\frac{dt}{d\lambda} = 2t - 96u^2 - 24tu \quad (\equiv A)
$$
\n(5)

$$
\frac{du}{d\lambda} = \epsilon u - 72u^2 - 16tu \quad (\equiv B)
$$
 (6)

$$
\left(c_{uu}^t = \binom{4}{3}\binom{4}{3}3! = 96, \quad c_{uu}^u = \binom{4}{2}\binom{4}{2}2! = 72, \quad \text{etc.}\right)
$$

• Then, the fixed point is

$$
(t^*, u^*) = \left(\frac{\epsilon^2}{108}, \frac{\epsilon}{72}\right) \tag{7}
$$

We regard this as the lowest order approximation to the Wilson-Fisher fixed point (WFFP).

Linearization around the WFFP

• Following the general prescription, let us define $\Delta u \equiv u-u^*, \Delta t \equiv t-t^*$ and recast (5) and (6) in the form

$$
\frac{d}{d\lambda} \begin{pmatrix} \Delta t \\ \Delta u \end{pmatrix} = Y \begin{pmatrix} \Delta t \\ \Delta u \end{pmatrix}.
$$

 \bullet The matrix Y can be obtained as

$$
Y \equiv \begin{pmatrix} \frac{\partial A}{\partial t} & \frac{\partial A}{\partial u} \\ \frac{\partial B}{\partial t} & \frac{\partial B}{\partial u} \end{pmatrix}_{\Delta t = \Delta u = 0} = \begin{pmatrix} 2 - 24u^* & -192u^* \\ -16u^* & \epsilon - 144u^* \end{pmatrix}
$$

$$
= \begin{pmatrix} 2 - \frac{1}{3}\epsilon & -\frac{8}{3}\epsilon \\ -\frac{2}{9}\epsilon & -\epsilon \end{pmatrix}.
$$

Statistical Mechanics I: Lecture 12 July 1, 2024 9 / 23

Scaling properties of the WFFP

• Thus, the linearized RG flow equation around the new fixed point is

$$
\frac{d}{d\lambda} \begin{pmatrix} \Delta t \\ \Delta u \end{pmatrix} = \begin{pmatrix} 2 - \frac{1}{3}\epsilon & -\frac{8}{3}\epsilon \\ -\frac{2}{9}\epsilon & -\epsilon \end{pmatrix} \begin{pmatrix} \Delta t \\ \Delta u \end{pmatrix}.
$$

• Since the off-diagonal elements do not contribute to the e[ig](#page-3-0)env[alu](#page-3-1)es to $O(\epsilon)$,

$$
y_u^{\text{WF}} = -\epsilon
$$
 and $y_t^{\text{WF}} = 2 - \frac{\epsilon}{3}$

The "t-like" scaling field t' is relevant.

$$
y_t^{\text{3DWF}} \approx 1.666 \cdots \quad \left(y_t^{\text{3DIsing}} \approx 1.588(1)^* \right),
$$

$$
y_t^{\text{2DWF}} \approx 1.333 \cdots \quad \left(y_t^{\text{2DIsing}} = 1 \right)
$$

[∗] M. Hasenbusch, K. Pinn, and S. Vinti: PRB 59, 11471 (1999)

Scaling eigenvalue of h at WFFP

• The RG flow equation for h , which has been neglected so far, is

$$
\frac{dh}{d\lambda} = y_h h - 2c_{th}^h th + (u^2 h \cdot \text{term}) = \frac{d+2}{2}h - 4th + \cdots
$$

$$
\approx \left(\frac{d+2}{2} - 4t^* + \cdots\right)h
$$

Therefore, $y_h^{\sf WF} =$ $d+2$ 2 $+ O(\epsilon^2)$. Specifically, $y_h^{\text{3D WF}} \approx 2.5$ and $y_h^{\text{2D WF}} \approx 2.0$.

The good agreements with

$$
y^{3D \text{ Ising}} = 2.4817(4)^*
$$
 and $y^{2D \text{ Ising}} = 1.875 \text{ (exact)}$.

indicate the validity of the ϵ -expansion as well as the equivalence between the WFFPs and the Ising FPs.

[∗] M. Hasenbusch, K. Pinn, and S. Vinti: PRB 59, 11471 (1999)

Statistical Mechanics I: Lecture 12 July 1, 2024 11 / 23

Irrelevancy of other operators

- Even if a field is irrelevant at the GFP, it may turn relevant at the WFFP. In such a case, the WFFP may not be the controlling FP. So, it is important to check whether there is no such felds.
- \bullet The RG flow equation for g_n around the GFP is

$$
\frac{dg_n}{d\lambda} = \left(d - \frac{n}{2}(d-2)\right)g_n - 12n(n-1)ug_n,
$$

Remembering that $u^* = \epsilon/72$,

$$
y_n^{\text{WF}} = \left(d - \frac{n}{2}(d - 2)\right) - 12n(n - 1)\frac{4 - d}{72}
$$

For $n \geq 6$, y_n^{WF} $_n^{\sf WF}$ are negative:

$$
y_n^{\text{3DWF}} = \frac{18 - 2n - n^2}{6}, \ y_n^{\text{2DWF}} = \frac{6 + n - n^2}{3}.
$$

$O(n)$ models

- \bullet To apply the perturbative RG to the XY $(O(2))$ and the Heisenberg $(\mathsf{O}(3))$ models we will introduce the multi-component ϕ^4 model.
- We can then construct the RG flow equation as before.

Statistical Mechanics I: Lecture 12 July 1, 2024 13 / 23

Multi-component ϕ^4 model

- Let us apply the perturbative RG to the XY $(O(2))$ or the Heisenberg $(O(3))$ models.
- To follow the same line of argument as before, we need something analogous to the ϕ^4 model to start with.
- So, let us consider multi-component field

$$
\boldsymbol{\phi}(\boldsymbol{x}) \equiv (\phi_1(\boldsymbol{x}), \phi_2(\boldsymbol{x}), \cdots, \phi_n(\boldsymbol{x}))^{\sf T}
$$

and the multi-component ϕ^4 model:

$$
\mathcal{H} \equiv \int d\boldsymbol{x} \left(|\nabla \phi|^2 + t \phi^2 + u(\phi^2)^2 - h \phi^1 \right)
$$

• If $t = u = h = 0$, the *n*-components are independent and each represents a Gaussian fixed point. Therefore, it is a fixed point for the new Hamiltonian. (We call this fixed point the GFP, too.)

Correlation functions

- To get familiarized with the new model, let us consider $\langle \bm{\phi}^2(\bm{x}) \bm{\phi}^2(\bm{y}) \rangle$ gfp .
- Since we can use Wick's theorem for the multi-component GFP,

$$
\begin{aligned} \langle\bm{\phi}^2(\bm{x})\bm{\phi}^2(\bm{y})\rangle \\&=\langle\phi_{\alpha}(\bm{x})\phi_{\alpha}(\bm{x})\phi_{\beta}(\bm{y})\phi_{\beta}(\bm{y})\rangle\quad\text{(Einstein's convention)}\\&=\langle\phi_{\alpha}(\bm{x})\phi_{\alpha}(\bm{x})\rangle\langle\phi_{\beta}(\bm{y})\phi_{\beta}(\bm{y})\rangle\\&+2\langle\phi_{\alpha}(\bm{x})\phi_{\beta}(\bm{y})\rangle\langle\phi_{\alpha}(\bm{x})\phi_{\beta}(\bm{y})\rangle\\&=n^2G^2(0)+2nG^2(r) \end{aligned}
$$

where $r\equiv |\bm{x}-\bm{y}|$ and $\,\, G(r)\equiv \langle \phi_1(\bm{x})\phi_1(\bm{y}) \rangle \approx r^{-2x}\,$ with $x = (d-2)/2$ as usual.

Diagrammatic representation

• We have seen that

$$
\langle \phi^2(x)\phi^2(y)\rangle = n^2G^2(0) + 2nG^2(r)
$$

- Compared with the previous case of $n = 1$, the difference is the factors n^2 and $n.$
- **•** For a given pattern of Wick paring, draw the diagram like the one in the right with the correspondence:

wavy lines \leftrightarrow (repeated indices in

Einstein convention regular lines \leftrightarrow (Wick paring

 \bullet To a diagram with q disconnected components, we assign the factor n^g .

$$
\langle \phi^{\alpha}(x) \phi^{\alpha}(x) \phi^{\beta}(y) \phi^{\beta}(y) \rangle
$$
\n
$$
= \bigoplus_{x} \begin{pmatrix} 1 \\ 1 \\ x \end{pmatrix} \quad n^2 \, G^2(\sigma)
$$
\n
$$
+ \begin{pmatrix} 1 \\ 1 \\ x \end{pmatrix} \quad n \, G^2(r)
$$
\n
$$
+ \begin{pmatrix} 1 \\ 1 \\ x \end{pmatrix} \quad n \, G^2(r)
$$
\n
$$
= n^2 G^2(\sigma) + 2n G^2(r)
$$

$\varphi_t \equiv \left\lbrack\phi^2\right\rbrack = \phi^2-nG^2(0)$

obtain after removing all contributions from

• For the correlator of two ϕ_2 s, we have

Scaling operator φ_t (previously $\varphi_2)$

the diagrams with inner connections.

• For example,

• As before, we can define the normal-order product, $[\![\cdots]\!]$, as the operator that we

$$
\langle \varphi_t(\boldsymbol{x})\varphi_t(\boldsymbol{y})\rangle = 2nG^2(r)
$$

(See the diagram on the right.)

$$
\begin{pmatrix} \frac{2}{3} \\ \frac{1}{3} \end{pmatrix} = \begin{pmatrix} \frac{2}{3} \\ \frac{1}{3} \end{pmatrix} + \begin{pmatrix} \frac{2}{3} \\ \frac{1}{3} \end{pmatrix}
$$

$$
\phi^2 \qquad \qquad \varphi_{\mathcal{L}} \qquad n \, G(o)
$$

$$
\langle \varphi_t(x) \varphi_t(y) \rangle
$$

= $\left(\overline{\hat{s}}\right) - \left(\overline{s}\right)$

$$
+\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)
$$

$$
=2nG^2(r)
$$

Scaling operator φ_u (previously $\varphi_4)$

Similarly, we define ϕ_4 as

$$
\varphi_u(\boldsymbol{x}) \equiv \left[\!\left(\boldsymbol{\phi}^2(\boldsymbol{x})\right)^2\right]\!\right]
$$

• Then, the correlator becomes

$$
\langle \varphi_u(\mathbf{x})\varphi_u(\mathbf{y}) \rangle
$$

= (Two-loop terms)
+ (One-loop terms)
= $8n^2G^4(r) + 16nG^4(r)$
= $(8n^2 + 16n)G^4(r)$

$$
= 8 \times \left(\frac{2}{3}\right) + \cdots
$$

+ 16 \times \left(\frac{2}{3}\right) + \cdots
= (8 n² + 16n) G(r) + \cdots

 $\langle q(x)\varphi(y)\rangle$

$c_{tt}^u, c_{tt}^t, c_{tu}^u, c_{tu}^t$ for $O(n)$ GFP

First, let us expand $\varphi_t(\bm{x})\varphi_t(\bm{y}).$

$$
\varphi_t(\boldsymbol{x})\varphi_t(\boldsymbol{y})\\ \approx \varphi_u(\boldsymbol{x})+4G(r)\varphi_t(\boldsymbol{x})+\cdots.
$$

Thus, we obtain $c_{tt}^u = 1$ and $c_{tt}^t = 4$. For $\varphi_t(\bm{x})\varphi_u(\bm{y})$, we obtain

$$
\varphi_t(\mathbf{x})\varphi_u(\mathbf{y})
$$

= $\varphi_6(\mathbf{x}) + 8G(r)\varphi_u(\mathbf{x})$
+ $4nG^2(r)\varphi_t(\mathbf{x}) + 8G^2(r)\varphi_t(\mathbf{x})$
= $\varphi_6 + 8G\varphi_u + (4n+8)G^2\varphi_t + \cdots$.

 $\mathcal{G}_{t}(x) \cdot \mathcal{G}_{t}(y)$ $=\frac{x}{y}$ $\frac{y}{y}$ + $\frac{y}{y}$ $+2\binom{3}{3}$

We obtain $c_{tu}^u = 8$ and $c_{tu}^t = 4(n+2)$.

Wilson-Fisher FP for $O(n)$ GFP

• The RG flow equation is

$$
\begin{cases}\n\frac{dt}{d\lambda} = 2t - 32(n+2)u^2 - 8(n+2)tu \equiv A \n\frac{du}{d\lambda} = \epsilon u - 8(n+8)u^2 - 16tu \equiv B \n\Rightarrow (t^*, u^*) = \left(\frac{\epsilon^2}{4(n+8)^2}, \frac{\epsilon}{8(n+8)}\right)\n\end{cases}
$$

 \bullet The flow equation for t around WFFP is

$$
\frac{dt}{d\lambda} = (2 - 8(n+2)u^*)t \quad \Rightarrow \quad y_t^{\text{WF}} = 2 - \frac{n+2}{n+8}\epsilon
$$

 \bullet For h , we have

$$
\frac{dh}{d\lambda} = (y_h^{\mathsf{G}} + O(\epsilon^2))h = \frac{d+2}{2}h
$$

$$
\Rightarrow y_h^{\mathsf{WF}} = \frac{d+2}{2} = 3 - \frac{\epsilon}{2}
$$

ϵ -expansion summary

Statistical Mechanics I: Lecture 12 July 1, 2024 21 / 23

Summary

- By applying the perturbative RG to GFP, we have found a new fixed point near the GFP. (Wilson-Fisher fixed point (WFFP))
- \bullet We can apply the same perturbative argument to the *n*-component field ϕ , resulting in the ϵ -expansion of the universality classes of the XY model ($n = 2$) and of the Heisenberg model ($n = 3$). In 3D, the estimates of scaling dimesnions were surprisingly good, whereas even in 2D, they are not so far from the correct values.

Exercise 12.1: Obtain the OPE of $\varphi_u(x)\varphi_u(y)$ at the GFP, and show

$$
c_{uu}^u = 8(n+8)
$$
 and $c_{uu}^t = 32(n+2)$.

