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In this lecture, we see ...

@ When there is a fixed point for which we know its OPE, we can
derive, by a perturbative argument, a set of equations describing RG
flow around it. (Then, we can study the behavior of other fixed points
in its vicinity, as we will discuss in the next lecture.)

@ We can obtain the renormalized Hamiltonian up to the 2nd order (or
more if we try harder) in the case of GFP, which is the lowest
non-trivial order.
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General perturbative RG

@ We decompose the field operator into the high-frequency component
and the low-frequency component.

@ Tracing out the high-fruquency component, followed by rescaling,
yields the RG flow equations.

@ In the RGT from the scale a to ab (b =1+ \), the product of two
scaling operators within the distance of a, gives rise to new
perturbative terms through OPE, which contributes non-linear terms
in the RG flow equation.

RGT

@
> s le)ga
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Expanding the Hamiltonian around a fixed point

@ Consider some fixed-point Hamiltonian, H7, with short-distant cut-off
(lattice constant) a, and consider a general Hamiltonian expressed in
terms of the scaling-operators at H}:

where ¢, is the scaling operator at H* with the dimension z,,.

ba(x) = ¢p(x') = Rpda(x) = b0 ()
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Outline of RGT for the expansion

@ We carry out the general RGT program: partial trace and rescaling.

@ We introduce the ultra-violet cut-off, a, which means two conditions:
(a) When we expand e~"e(%) the spatial integration like

/ dz1des - dTn doy (1) ey (22) - - - by ()

is restricted in the region where no two x; and x; are closer than a,
and (b) ¢, contains only low-frequency component with k& < 1/a.

o The partial trace will shift the cut-off a to a/ = e*a ~ (1 + \)a.

@ The OPE is applied to every pair of operators that come within the
mutual distance of a/, and taking the summation with respect to the
relative position of the two (This yields the factor Qq(a’? — a?)
~ Qgda®, where Qg is the volume of unit sphere.).
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The partial trace

@ We decompose the field operator as ¢ = ¢ + ¢* whre ¢ and ¢° are
the long wave-length (k < 1/a’) and the short (1/a’ < k < 1/a)
wave-length components of ¢, respectively.

e In what follows, Hq(= H} + V,) is the perturbed Hamiltonian, H; is
the fixed point Hamiltonian, Z; is the short wave-length contribution
to the partition function, H, is the coarse-grained (but not yet
re-scaled) perturbed Hamiltonian, and #; is the coarse-grained
fixed-point Hamiltonian. More specifically,

Zye M) = Ty o~ Hal9), (1)
{o°}
Zse_ﬂa/(gbz) = TI- e_%a(¢)
{o°}
N 1
— Tr e—”Ha(¢)(1_Va + = (V, 2_...)}
1 (6) + 3(Val0))
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The short wave-length average and the 1st order term

@ The partial trace over ¢° goes like

* * 1
To o—Ho(®)-Vald) _ Ty o—Hi(9) (1 V) + SVE(6) + - )
{¢°} {¢°} @)+ 3V ()

/% 1
= 2 (1= ), + 5 (o), 4 ) @)
where the short w.l. average is defined as

: = Tr ¢ Mal® Tr e Ha(®),
bos {¢°} /{¢S}

@ The first order term is simply

(Va(9))s = / dz ) | go(da(z))s = / dx ) gady(@) = Var(¢)
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The 2nd order term

@ We can split the double integration into 2 parts:

(V2(6))s = / dzdy S gags (Ga(@)05(y));
a Oé,ﬁ

o The first term is simply (V/(¢"))?:

Zgagﬂ | dwty(ou(@)ss)).

=3 goss / dady 64(2)6h(y) = (Va(6"))?
o, a
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The “collision” term

@ To conform the new cutoff a’, the OPE must be applied to the
second term in (3) representing operators too close to each other:

> g [ dady (6a(@)05(y)).
B a<|z—y|<a’
CM
af ¢ [T + Yy
= 9o 9 / dzdy TatTs—2 ¢ ( )
O%; ’ a<l|xz—y|<a’ Zﬂ: |Ll3 _y| o FTETTp

n
Ca
= S seastully' =) [ do 3 @
a

=4 // dx Z Z Cgﬁgagﬁ(gddaya+yﬁ_yu) ¢ﬁ(w)
T u \es
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The final form of the 2nd order term

Putting together, the 2nd order term in (3) becomes

((Va(9))?)s
— Ze M HA Y ( ch3909p(Qada?> 95~ y“)) / dz ¢, ()
TR o
_ Zse—’}:t:/ ((Va,<¢£))2 . 2Va(1int) (gbe))
V6 =AY (S cgaast@uantrmy | [ i ofie)
Iz o, @

Thus, the expansion (2) becomes

—Ha(9)— —H* 1 in
T TROTRE = g7 <1 Vi + 5 (Ve = V™ +)
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Summary of partial trace

@ Finally, the partial trace results in

Tr e Hal®)—Va(9) o 7 o= Hur(9)=Var(69)-V,7" (")
{o°}
@ Therefore, our Hamiltonian after the partial trace is

Haor(6°) = HE(0°) + Vi (0°) + VI (¢
A6+ Yo [ dedie)
u a

A _
-3 > chg9agsdQaave Ty / REAC)

paf @

= A0 + 3 [ de ol

A
where g, =g, — B) Z cgﬂgagﬁdﬁdayaﬂﬁ_y“
pof3
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Rescaling and RG flow equation
@ By re-scaling (2’ =b 'z and ¢/’u(w’) = b"rgt (x) ),

Ho6) = Rl = He(6) + [ dat v a)

_ A _
ap

@ By absorbing the factor %Qdayﬂ in the definition of g,, and g;L,

= (14 N)Y x (Qu - )\chﬁgagﬂ>

ap

af
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Perturbative RG around GFP

@ The criticality of the Ising model in d > 4 is controled by the
Gaussian fixed-point, though the critical behavior is modified by the
dangerously irrelevant field.

@ For d < 4, the Gaussian fixed-point is not stable w.r.t. the scaling
operator ¢4. This motivates us to look for another fixed point by
examining the perturbative RG flow around the Gaussian fixed point.
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Critical property of the Ising model above 4-dimensions

o Consider the ¢* model, with ¢ and ¢* terms. From the viewpoint of
the perturbative RG around GFP, it is convenient to use the scaling
fields ¢o and ¢4, instead of ¢? and ¢*:

H— /dw (IVoI? + té2 + uds — ho)
@ The scaling eigenvalues for these terms are

ro=2r=d—2 = yYyr=d—1x0=2
$4=4£B=2(d—2) = y4:d—m4=4—d.

@ Since ¢y is irrelevant if d > 4, the critical behavior of the ¢* model at
t = 0 (and therefore the Ising model at 7' = T, as well) is described
by the GFP.
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Dangerous irrelevant operator for d > 4

@ According to the general argument (see Lecture 7), the spontaneous
magnetization should scale like

Th d—2

m e~ L™ = [7% ~ v =t 1 . (wrong)

@ However, we saw that the mean-field theory correctly describes the
critical behavior for d > 4 (Ginzburg criterion), which means that

m ~ t2. (correct)

@ This apparent contradiction comes from the nature of the irrelevant
field u. Specifically, since the ¢* model at or below the critical point
(t < 0) is not well-defined when u = 0, we cannot simply put u =0
in the scaling form as we did in the general argument.
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Perturbative RG around GFP

@ We have derived the general RG flow

equation around a fixed-point. A
= «—GFY
dg,, " i (mF)
= YuIp — E :Caﬁgagﬁ (4) z
d\ 3 :
ap i &~
2
o If we apply this to GFP, we immediately o+ GF

notice that, in d > 4, there is no relevant
field other than ¢, implying that the GFP
governs the critical phenomena of the ¢*
model.
@ Even below four dimensions, we may be able to obtain a new fixed
point from (4) if it is near the GFP.

@ In other words, we may try to find g, that makes the r.h.s. of (4)
zero and deduce its properties from (4). (Next lexture)
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Summary

@ We have derived a set of equations describing RG flow around a given
fixed point.

@ We can obtain the renormalized Hamiltonian up to the 2nd order (or
more if we try harder) in the case of GFP, which is the lowest
non-trivial order.

@ Above four dimensions, the critical point is controled by the Gaussian
fixed point.

@ However, the dangerously irrelevant field, u, modifies the critical
beheviors to mean-field like.

@ Below four dimensions, the critical point is not controled by the
Gaussian fixed point because u becomes relevant.

@ We may be able to find the “true” fixed point by analyzing the RG
flow equation. (Next lecture)
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Exercise 11.1: We saw an apparent contradiction between the general
scaling argument and the mean-field behaviors expected from the
Ginzburg criterion. Think of a scaling form of the singular part of the free
energy that obeys the scaling properties expected from the general
argument, and, at the same time, produces the correct mean-field critical
behaviors.
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