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In this lecture we see ...

@ There are cases where we can rely on the mean-field theory even for
the critical behavior. (Ginzburg criterion)

@ However, in low dimensions including d = 3, the mean-field theory is
not self-consistent concerning the critical phenomena.

@ We can define the renormalization group (RG) transformation, and if
we can calculate its result, we would be able to discuss the critical
properties of the system.

@ For 1D Ising model, we can carry out the RG transformation, which
yields correct critical behavior.
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When can MF be valid? — Ginzburg criterion

First, we will elucidate the meaning of the asymptotic validity and
draw a general criterion.

Then, we will check whether the mean-field theory satisfies the
criterion in a self-consistent way.

We will find that it is indeed self-consistent in some cases, but not in
general. (Ginzburg criterion)
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Asymptotic validity of MF approximation
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Consider a system just below the critical temperature, where there is
a finite but small spontaneous magnetization.

The mean-field (MF) description should be valid when the relative
fluctuation is negligible, i.e., d¢, < ()
Typically, this condition is not satisfied at the scale of lattice

constant, e.g., for the Ising model, (¢,) =~ 0 and d¢p, = /{(Ip2) = 1.

However, the MF description may still be qualitatively correct at
larger length-scales b, greater than the lattice constant, a, and smaller
than the correlation length, &, relevant to the critical behavior.

So, we consider the local average of ¢, i.e., dr = bid ZTEQb(R) O
over the cluster of size b.

The condition for asymptotic validity of MF is that, for any A
(0 < X < 1), for clusters of size b = A, the ratio dpr/{(PR)
converges to zero as we approach T, from below (£ — o00).
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Self-consistency of mean-field approximation

5 - At
o For (¢), below T., we have (@)3p ~ m? ~ % ~ uLé
@ For the amplitude of the fluctuation, we have

_ a\ 2d A()\
<(5¢)2>MF = (—) Z <5(,b,,./5gb,.) S S:l—)Z (* see supplement)
b e pé
r,r b(R)
where A depends on £ only through A = b/¢.
@ It follows that, for any A, the ratio

(6% ImE/ (Dme ~ AN up 24

always converges to 0 if d > 4, and diverges if d < 4 as £ — oc.

Ginzburg criterion (Upper critical dimension)

The MF approximation to ¢* model is asymptotically correct if d > 4, and
invalid if d < 4.
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Supplement: MF estimate of fluctuation

In Lecture 3, we saw

1d—2
<6¢r’6¢r> ~ l’{—d_le—n’lr’—ﬂ, (;.g’ — l ~ —At)
P(K'r) 2z 3
from which we obtain
_ an 2d and p—lﬁld—Q A
) =(3)" X Gwson ~ () K emlar]
7' €Qy(R) Ar (F|AT]) 2

drx 2 e

f(k'D) N z (x < 1)

pK’2bd (f(CU) {foo (a dimension-less constant) (x > 1))

K2 () A O
<Gt e (=53 1=g)

/
N 1 b d_lp_llild_z —n’rN l 1 /K,b de1 .
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Supplement: MF estimate of fluctuation

fm) A
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General renormalization group (RG) transformation

|
T

<3
A4

e (r——g_?
Ex pu el a
Y=l Y‘QSca[ngr

@ In the derivation of the Ginzburg criterion, we introduced the
coarse-graining transformation as a Gedankenexperiment.

@ The RG transformation consists of two steps: (i) coarse-graining and
(i) rescaling. Schematically,

Ho(S| K, L) Q Hap(S | K, L) ﬂ Ho(S|K,b7'L)

Naoki KAWASHIMA (ISSP) Statistical Mechanics I: Lecture 5




General Renormalization Group Transformation

s

o
e = 4
A D el & =
e Yeseafing

@ In the coarse-graining step, we define coarse-grained field and carry
out the configuration-space summation of the partition function, with
the constraint imposed by the coarse-grained fields.

@ In the rescaling step, we redefine the length-scale and the field
variables by multiplying them with scaling factors so that the effective
Hamiltonian may be the same form as the original one.
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Coarse-graining

In the coarse-graining step of the RG procedure, we first define
“coarse-grained field"”, SR, which is defined in terms of S,. in the
neighborhood of R, i.e., Sg = Y({Sr}req,(r)), With some function
Y(--+). More formally,

e_Ha(S|K7L) — e_Hab(glkﬁL) = Z A(S’ |E(S))€_HO’(S|K’L),
S

where K is a set of parameters such as K = (5, H).

Example 1 (Ising chain with b = 3)
(51, 52,53) = So (Simple decimation)
X(51,52,53) = (S1+ S22+ 53)/3 (Local Average)
(81, 52,53) = sign(S1 + S2 + S3) (Majority rule)
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Example: Coarse-graining of Ising chain (b = 2)

@ Consider the Ising model of size L = 29 in one dimension.
Ho(S|K, L) —KZ SiSip1 — hz S; (K =(K,h)

@ For even L, let us adopt the decimation for the coarse-graining:

S;=8; (fori=0,2,4,---,L—2)

o Then, e H2a(SIKL) — Z e~ Ha(SIK.L)  For b, = 0 we have
S1,83,+,S0—1
o~ H2a(S|K,L) Z oK (S0+52)51 Z oK (52+54)53 Z oK (SL—2+50)S1—1
Sr—1

ef{S()SQeKSQS4 L. eKSL_QSQ ~ e—’Hza(S|K,L) (thk = (th K)2)
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Example: Rescaling of Ising chain (b = 2)

@ Let us use t = th K instead of K for the parameter. Then, the effect
of the coarse-graining on t is

t =2
@ The rescaling in the present case is simply
r=r/2, S;=S,, and {=L.

@ Together with the coarse-graining, we obtain the whole RG
transformation,

H.(S|t, L) % Ho (S|t /

£, L/2), with {=1¢
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Example: Critical exponent v
@ From the whole RG procedure, we can deduce
e €0 (8,.80) = (SpSo); ~ o "/8(0)
@ Because ¥ =r/2,
) =26 (f=1).

@ Since { = t2, if we define ¢ = —logt, the correlation length as a
function of g would satisfy

£(g) = 2£(29).

@ From this, we can obtain £(g) upto a constant factor,

¢(g) ~ p = v =1 (Exact!)
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Exercise 5.1: By solving the 1D Ising model, compute the correlation

function G(r) = (S,Sp) and the correlation length £. Verify £ oc g=1
where g = —log th K. (Hint: The correlation function can be expressed

as
(SrSo) = Tr (T4 "0T"s) / Tx (TF)
where T"is a 2 x 2 matrix defined as Ty 5 = e5'S and o is another

2 x 2 matrix defined as 0 = ( é _01 ) )

The matrices T and ¢ can be diagonalized as

el e K 2ch K 0 0 1
T:<e—K eK>:U< 0 QShK)U’ "_U<1 0>U’
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where U = % G _11> Therefore, the correlation function, C'(r) = (S.,.Sy), of

a periodic system of length L can be computed as

C(r) = (2ch K)-7"(2sh K)" + (2sh K)27"(2ch K)™  ¢" +¢&7"
"= (2¢h K)L + (2sh K)E 2

with ¢t = th K. Therefore, in the limit r < L, the correlation function behaves
like C(r) = t". From this, we obtain e='/¢ = ¢, or £ = 1/log(1/t) = 1/g.

This is identical to what we obtained from the coarse-graining of the 1D Ising
chain.
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