
Lecture 5: Introduction to Renormalization Group

Naoki KAWASHIMA

ISSP, U. Tokyo

May 20, 2024

Naoki KAWASHIMA (ISSP) Statistical Mechanics I: Lecture 5 May 20, 2024 1 / 15

In this lecture we see ...

There are cases where we can rely on the mean-field theory even for
the critical behavior. (Ginzburg criterion)

However, in low dimensions including d = 3, the mean-field theory is
not self-consistent concerning the critical phenomena.

We can define the renormalization group (RG) transformation, and if
we can calculate its result, we would be able to discuss the critical
properties of the system.

For 1D Ising model, we can carry out the RG transformation, which
yields correct critical behavior.
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When can MF be valid? — Ginzburg criterion

First, we will elucidate the meaning of the asymptotic validity and
draw a general criterion.

Then, we will check whether the mean-field theory satisfies the
criterion in a self-consistent way.

We will find that it is indeed self-consistent in some cases, but not in
general. (Ginzburg criterion)
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Asymptotic validity of MF approximation

Consider a system just below the critical temperature, where there is
a finite but small spontaneous magnetization.

The mean-field (MF) description should be valid when the relative
fluctuation is negligible, i.e., δϕr ≪ ⟨ϕr⟩
Typically, this condition is not satisfied at the scale of lattice
constant, e.g., for the Ising model, ⟨ϕr⟩ ≈ 0 and δϕr =

√
⟨δϕ2

r⟩ ≈ 1.

However, the MF description may still be qualitatively correct at
larger length-scales b, greater than the lattice constant, a, and smaller
than the correlation length, ξ, relevant to the critical behavior.

So, we consider the local average of ϕ, i.e., ϕ̄R ≡ 1
bd

∑
r∈Ωb(R) ϕr

over the cluster of size b.

The condition for asymptotic validity of MF is that, for any λ
(0 < λ < 1), for clusters of size b ≡ λξ, the ratio δϕ̄R/⟨ϕ̄R⟩
converges to zero as we approach Tc from below (ξ → ∞).
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Self-consistency of mean-field approximation

For ⟨ϕ̄⟩, below Tc, we have ⟨ϕ̄⟩2MF ∼ m2 ∼ |∆t|
u

∼ ρ

uξ2

For the amplitude of the fluctuation, we have

⟨(δϕ̄)2⟩MF =
(a
b

)2d ∑
r,r′∈Ωb(R)

⟨δϕr′δϕr⟩ ≲
A(λ)

ρξd−2
(∗ see supplement)

where A depends on ξ only through λ ≡ b/ξ.

It follows that, for any λ, the ratio

⟨δϕ̄2⟩MF/⟨ϕ̄⟩2MF ∼ A(λ)uρ−2ξ4−d

always converges to 0 if d > 4, and diverges if d < 4 as ξ → ∞.

Ginzburg criterion (Upper critical dimension)

The MF approximation to ϕ4 model is asymptotically correct if d > 4, and
invalid if d < 4.
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Supplement: MF estimate of fluctuation

In Lecture 3, we saw

⟨δϕr′δϕr⟩ ∼
1

ρ

κ′d−2

(κ′r)
d−1
2

e−κ′|r′−r|,

(
κ′ =

1

ξ
≈

√
−∆t

)
from which we obtain

⟨(δϕ̄)2⟩ =
(a
b

)2d ∑
r,r′∈Ωb(R)

⟨δϕr′δϕr⟩ ∼
(a
b

)d∑
∆r

ρ−1κ′d−2

(κ′|∆r|)
d−1
2

e−κ′|∆r|

∼ 1

bd

∫ b

0
dr rd−1 ρ

−1κ′d−2

(κ′r)
d−1
2

e−κ′r ∼ 1

bd
1

ρκ′2

∫ κ′b

0
dx x

d−1
2 e−x

∼ f(κ′b)

ρκ′2bd

(
f(x) ∼

{
x

d+1
2 (x ≪ 1)

f∞ (a dimension-less constant) (x ≫ 1)

)

∼ κ′2−d

ρ
× f(κ′b)

(κ′b)d
=

A(λ)

ρξd−2
.

(
A(λ) ≡ f(λ)

λd
, λ ≡ b

ξ

)
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Supplement: MF estimate of fluctuation
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General renormalization group (RG) transformation

In the derivation of the Ginzburg criterion, we introduced the
coarse-graining transformation as a Gedankenexperiment.

The RG transformation consists of two steps: (i) coarse-graining and
(ii) rescaling. Schematically,

Ha(S |K, L)
(i)
−−→ Hab(S̃ |K̃, L)

(ii)
−−→ Ha(Ś |Ḱ, b−1L)
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General Renormalization Group Transformation

In the coarse-graining step, we define coarse-grained field and carry
out the configuration-space summation of the partition function, with
the constraint imposed by the coarse-grained fields.

In the rescaling step, we redefine the length-scale and the field
variables by multiplying them with scaling factors so that the effective
Hamiltonian may be the same form as the original one.
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Coarse-graining

In the coarse-graining step of the RG procedure, we first define
“coarse-grained field”, S̃R, which is defined in terms of Sr in the
neighborhood of R, i.e., S̃R = Σ({Sr}r∈Ωb(R)), with some function
Σ(· · · ). More formally,

e−Ha(S|K,L) → e−Hab(S̃|K̃,L) ≡
∑
S

∆(S̃ |Σ(S))e−Ha(S|K,L),

where K is a set of parameters such as K ≡ (β,H).

Example 1 (Ising chain with b = 3)

Σ(S1, S2, S3) = S2 (Simple decimation)

Σ(S1, S2, S3) = (S1 + S2 + S3)/3 (Local Average)

Σ(S1, S2, S3) = sign(S1 + S2 + S3) (Majority rule)
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Example: Coarse-graining of Ising chain (b = 2)

Consider the Ising model of size L ≡ 2g in one dimension.

Ha(S|K, L) = −K

L−1∑
i=0

SiSi+1 − h

L−1∑
i=0

Si (K ≡ (K,h))

For even L, let us adopt the decimation for the coarse-graining:

S̃i = Si (for i = 0, 2, 4, · · · , L− 2)

Then, e−H2a(S̃|K̃,L) =
∑

S1,S3,··· ,SL−1

e−Ha(S|K,L). For h = 0 we have

e−H2a(S̃|K̃,L) =
∑
S1

eK(S0+S2)S1
∑
S3

eK(S2+S4)S3 · · ·
∑
SL−1

eK(SL−2+S0)SL−1

∼ eK̃S0S2eK̃S2S4 · · · eK̃SL−2S0 ∼ e−H2a(S̃|K̃,L) (th K̃ ≡ (thK)2)
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Example: Rescaling of Ising chain (b = 2)

Let us use t ≡ thK instead of K for the parameter. Then, the effect
of the coarse-graining on t is

t̃ = t2.

The rescaling in the present case is simply

ŕ ≡ r/2, Śŕ ≡ S̃r, and t́ ≡ t̃.

Together with the coarse-graining, we obtain the whole RG
transformation,

Ha(S|t, L)
RG−−→
b=2

Ha(Ś|t́, L/2), with t́ = t2.
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Example: Critical exponent ν

From the whole RG procedure, we can deduce

e−r/ξ(t) ∼ ⟨SrS0⟩t = ⟨SŕS0⟩t́ ∼ e−ŕ/ξ(t́)

Because ŕ = r/2,

ξ(t) = 2ξ(t́)
(
t́ = t2

)
.

Since t́ = t2, if we define g ≡ − log t, the correlation length as a
function of g would satisfy

ξ(g) = 2ξ(2g).

From this, we can obtain ξ(g) upto a constant factor,

ξ(g) ∼ 1

g
⇒ ν = 1 (Exact!)
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Exercise 5.1: By solving the 1D Ising model, compute the correlation
function G(r) ≡ ⟨SrS0⟩ and the correlation length ξ. Verify ξ ∝ g−1

where g ≡ − log thK. (Hint: The correlation function can be expressed
as

⟨SrS0⟩ = Tr
(
TL−rσT rσ

)/
Tr
(
TL
)

where T is a 2× 2 matrix defined as TS′,S ≡ eKS′S and σ is another

2× 2 matrix defined as σ ≡
(

1 0
0 −1

)
. )

The matrices T and σ can be diagonalized as

T =

(
eK e−K

e−K eK

)
= U

(
2 chK 0

0 2 shK

)
U, σ = U

(
0 1
1 0

)
U,
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where U ≡ 1√
2

(
1 1
1 −1

)
. Therefore, the correlation function, C(r) ≡ ⟨SrS0⟩, of

a periodic system of length L can be computed as

C(r) =
(2 chK)L−r(2 shK)r + (2 shK)L−r(2 chK)r

(2 chK)L + (2 shK)L
=

tr + tL−r

1 + tL

with t ≡ thK. Therefore, in the limit r ≪ L, the correlation function behaves
like C(r) = tr. From this, we obtain e−1/ξ = t, or ξ = 1/ log(1/t) = 1/g.

This is identical to what we obtained from the coarse-graining of the 1D Ising

chain.
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