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In this lecture, we see ...

Molecular-field theory yields the equation of the state, not the free
energy.

Gibbs-Bogoliubov-Feynman inequality give us a systematic and flexible
framework for constructiong the mean-field-type approximations.
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Molecular field theory revisited

In the molecular-field theory, the effect of environment is replaced by
an additional term. For the Ising ferromagnet, the many-body
problem is reduced to a 1-body problem about a spin, say S0,

H = −J
∑
(ij)

SiSj −H
∑
i

Si → HMF = −HMFS0 −HS0

where (ij) is the nearest neighbor pair of sites.

It is also argued that the right choice of the effective field is

HMF = J
∑
j

⟨Sj⟩

The uniformity condition m = ⟨Si⟩ (independent of i) yields,

m = tanh(β(H + zJm)) (z = (number of nearest-neighbors))
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Why should we complain?

It is not generally obvious how we should choose the mean-field. (The
order parameter may not have a simple form in terms of the model
degrees of freedom.)

In principle, we have multiple solutions of the self-consistent equation.

The molecular-field theory does not tell us which solution we should
choose.

Is there any general framework for the mean-field approximation?
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Gibbs-Bogoliubov-Feynman (GBF) inequality

Theorem 1 (GBF inequality)

For two Hamiltonians H(S) and H0(S) defined on the same space S ∈ Ω,

Fv ≡ F0 + ⟨H −H0⟩0 ≥ F, (1)

where F and F0 are the free-energies of H and H0 respectively and ⟨· · · ⟩0
is the thermal average with respect to H0.

Variational calculation

When H(S) is the Hamiltonian of the system that we want to study but is
not solvable, by taking H0(Λ, S) that depends on a set of parameters Λ
and is solvable for any Λ, the resulting Fv(Λ) provides us with the
computable upper bound of the correct free energy. To obtain the best
upper-bound, we minimize it w.r.t. Λ.
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GBF inequality from information-scientific view-point

Theorem 2 (Relation to Kullback-Leibler divergence)

The “error” in the variational free-energy is proportional to the
Kullback-Leibler divergence of the equilibrium distribution of H0 relative
to that of H.

More precisely,

Fv − F = kBT DKL(ρ0|ρ) (2)

where

ρ0 ≡ e−βH0/Z0, and ρ ≡ e−βH/Z (3)

and

DKL(P |Q) ≡
∑
S

P (S) log
P (S)

Q(S)
(4)

(Z and Z0 are partition functions of H and H0 respectively.)
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Proof of Theorem 2

DKL

(
Z−1
0 e−βH0

∣∣∣Z−1e−βH
)

=
∑
S

(
e−βH0(S)

Z0
log

(
e−βH0(S)

Z0

)
− e−βH0(S)

Z0
log

(
e−βH(S)

Z

))

= − logZ0 + ⟨−βH0⟩0 + logZ − ⟨−βH⟩0

= βF0 − β⟨H0⟩0 − βF + β⟨H⟩0

= β(Fv − F )
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Kullback-Leibler information measure is positive

DKL(P |Q)

=
∑
S

P (S) log
P (S)

Q(S)
= −

∑
S

P (S) log
Q(S)

P (S)

≥ −
∑
S

P (S)

(
Q(S)

P (S)
− 1

)
(because log(x) ≤ x− 1)

=
∑
S

(Q(S)− P (S)) = 1− 1 = 0

Remark

This inequality together with Theorem 2 proves Theorem 1.
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Quantum extension

The theorems have been proved for classical systems. The
corresponding quantum version of them can be also proved.

For the extension, the KL divergence must be generaized to

DKL(P |Q) ≡ TrP (logP − logQ) (5)

where P and Q are now density operators. (If a positive semi-definite
operator X satisfies the normalization TrX = 1, we call it a density
operator.)

The only non-trivial part in the proof of the quantum extension is the
positivity of the KL information. The rest is straight-forward simply
by replacing

∑
S by Tr.
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Positivity of quantum version of KL divergence (1/2)

Theorem 3 (Positivity of quantum KL divergence)

For any density operators P and Q,

DKL(P |Q) ≡ TrP logP − P logQ ≥ 0 (6)

Proof:

Let us take the basis set in which P is diagonal, i.e., Pij = piδij .

Let U be the unitary operator U diagonalizing Q, i.e., ∆ ≡ U †QU is
a diagonal operator. Then, Qij = uikqku

∗
jk.

With this uij ,

DKL(P |Q) =
∑
i

pi log pi −
∑
ij

piaij log qj (aij ≡ |uij |2) (7)

Notice that aij ≥ 0,
∑

i aij =
∑

j aij = 1.
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Positivity of quantum version of KL divergence (2/2)

By defining p′ij = piaij , q′ij = qjaij , we can regard them as the
“classical” distribution function in the squared Hilbert space
H ×H ≡ { (ij) | i, j ∈ H} because

p′ij ≥ 0, q′ij ≥ 0,
∑
ij

p′ij =
∑
ij

q′ij = 1

The two terms in (7) can be expressed as, respectively,∑
ij

p′ij log p
′
ij =

∑
i

pi log pi +
∑
ij

piaij log aij∑
ij

p′ij log q
′
ij =

∑
ij

piaij log qj +
∑
ij

piaij log aij ,

By subtracting the second from the first, we obtain DKL(P |Q) =∑
ij p

′
ij log(p

′
ij/q

′
ij), and this must be non-negative because the RHS

is the classical KL divergence. (QED)
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Some examples

Ising model: Λ = (Γ)

H ≡ −J
∑
(ij)

SiSj −H
∑
i

Si, H0 ≡ −Γ
∑
i

Si

(Γ ̸= 0 represents ferromagnetism.)

Hubbard model: Λ = ({Λijµν})

H ≡ −t
∑

(ij)σ=↑↓

c†iσcjσ +
1

2

∑
i,j

Vijninj − µ
∑
i

ni

H0 ≡
∑
ijµν

Λiµ,jνaiµajν (Λiµ,jν = −Λjν,iµ)

where ni ≡
∑

σ c
†
iσciσ, and (ai1, ai2, ai3, ai4) = (ci↑, ci↓, c

†
i↑, c

†
i↓).

(Λi1,j2 ̸= Λi4,j3 represents superconductivity.)
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Variational approximation to the Ising model (1/2)

For the target Hamiltonian H ≡ −J
∑

(ij) SiSj −H
∑

i Si, let us
take the “trial” Hamiltonian H0 ≡ −Λ

∑
i Si. where Λ is a

variational parameter.

Then, our variational free energy is

Fv = F0 + ⟨H −H0⟩0
= ⟨H⟩0 − S0T

where S0 ≡ T−1(⟨H0⟩0 − F0) is the entropy of the H0 system

By introducing m ≡ ⟨Si⟩0 = tanhβΛ,

⟨H⟩0 = −z

2
NJm2 −HNm S0 = Nσ(m) (8)

σ(m) ≡ −kB

(
1 +m

2
log

1 +m

2
+

1−m

2
log

1−m

2

)
(9)
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Variational approximation to the Ising model (2/2)

Variational free-energy density

fv ≡ Fv

N
= −zJm2

2
−Hm− Tσ(m)

Moreover, the GBF inequality tells us that we should take the solution
with the smallest fv with respect to λ. Since fv depends on λ only
through m, the stationary condition is ∂fv/∂m = 0.

From this, we obtain the same as the molecular-field approx.:

∂fv
∂m

= 0 ⇒ m = tanhβHMF (HMF ≡ zJm+H). (10)
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Mean-field free energy — Landau expansion

We have also obtained the explicit expression for the free energy.

Since its behavior near m ≈ 0 is most important for the critical
phenomena, let us expand fv with respect to m.

fv = −zJ

2
m2 −Hm− kBT

(
log 2− m2

2
− m4

12
+ · · ·

)
(11)

From the condition (coefficient of m2) = 0, we obtain kBTc = zJ .

Near T ≈ Tc, we can get a generic form of Landau expansion:

∆fv ≈ −Hm+ tm2 + um4 (12)

where ∆fv ≡ fv − f0
v , f

0
v ≡ −zJ log 2, t ≡ (kBT − zJ)/2 and

u ≡ zJ/12.

It is also clear we should choose non-zero m solution below Tc.
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Exercise 2.1: Verify (8) and (9).

⟨H⟩0 = −J
∑
(ij)

⟨SiSj⟩0 −H
∑
i

⟨Si⟩0 = −J
∑
(ij)

m2 −H
∑
i

m

= N ×
(
−2

z
Jm2 −Hm

)
S0 =

1

T
(⟨H0⟩0 − F0)0 =

1

T

(
−Λm+NT log

(
eβΛ + e−βΛ

))
m ≡ tanhβΛ ⇒ βΛ =

1

2
log

1 +m

1−m
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S0/N = −m

2
log

1 +m

1−m
+

1

2
log
(
e2βΛ + 2 + e−2βΛ

)
= −m

2
log

1 +m

1−m
+

1

2
log

(
1 +m

1−m
+ 2 +

1−m

1 +m

)
= −1 +m

2
log

1 +m

2
− 1−m

2
log

1−m

2
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Exercise 2.2: At the point where we have arrived at (10), m is just the
magnetization of the variational Hamiltonian. How can we interpret it as
the magnetization of the target Hamiltonian within the mean-field
approximation?

Within the mean-field approximation, the variational free energy Fv, not F0, with
the optimal value of Λ is our approximation to the target free energy. Therefore,
for the variational minimum F ∗

v ≡ minΛ Fv(Λ), if we can prove that
Nm = −∂F ∗

v /∂H, then it would establish the interpretation. We can do this as
follows:

∂f∗

∂H
=

(
∂f∗

∂H

)
m

+

(
∂m

∂H

)(
∂f∗

∂m

)
H

= −m

because (∂f∗/∂m)H = 0.
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Exercise 2.3: Based on the variational principle, propose an
improvement on the simplest mean-field approximation of the Ising model
discussed in the lecture, and obtain its equation of state. Specifically,
propose a variational Hamiltonian that would be closer to H than H0

discussed in the lecture but still solvable.

For example, we may consider the Hamiltonian of non-interacting pairs instead of

the Hamiltonian of non-interacting single spins considered in the lecture.

Specifically, H0 =
∑

(ij) Hij with Hij ≡ −Λ1(Si + Sj)− Λ2SiSj where
∑

(ij) is

the summation over all mutually non-overlapping nearest-neighbor pairs of spins

that covers the whole system. Similarly, we can improve the approximation

systematically by considering bigger local clusters: H0 =
∑

c Hc where
∑

c is the

summation over all mutually non-overlapping clusters of spins that covers the

whole system, and Hc is some parameterized function of spins in the cluster.

(The required computational effort would increase very fast, though, as we

increase the cluster size.)
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Exercise 2.4: Obtain the Landau expansion of the 3-state Potts model
by taking the trial Hamiltonian H0 ≡ −Λ

∑
i δSi,1 with Si = 1, 2, 3.

What is the symmetry-breaking order-parameter and what is the essential
difference from the Ising case?

By defining m ≡ ⟨δSi,1⟩ − 1
3 , we obtain

⟨H⟩0 = −z

2
NJ(

1

3
+

3

2
m2)

S0 = −p1 log p1 − p2 log p2 − p3 log p3

= −
(
1

3
+m

)
log

(
1

3
+m

)
− 2

(
1

3
− m

2

)
log

(
1

3
− m

2

)
From this we obtain the Landau free energy similar to that of the Ising model

discussed in the lecture. However, the important difference lies in the existence of

the 3rd order term −vm3 with a positive constant v. This makes the transition

the 1st-order one, in contrast to the Ising model.
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Exercise 2.5: Consider the S=1 Ising model:

H ≡ −J
∑
(ij)

SiSj −D
∑
i

(Si)
2. (Si = −1, 0, 1)

Propose a trial Hamiltonian for this model, and, by the variational
approximation with it, obtain the T −D phase diagram.

Let the variational Hamiltonian be

H0 = −
∑
i

(
ΓSi + ΛS2

i

)
.

Or, equivalently, let us denote the probability of having Si = 1, 0,−1 under this
trial Hamiltonian as p, r, q respectively. Then,

m ≡ ⟨Si⟩0 = p− q,

n ≡ ⟨S2
i ⟩0 = p+ q.
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It follows that

p =
n+m

2
, q =

n−m

2
, r = 1− u.

Obviously, we can regard (m,n) or (p, q) as our variational parameters, instead of
(Γ,Λ). Now, the expectation valur of the target Hamiltonian becomes

⟨H⟩0/N = −z

2
Jm2 −Dn.

As for the entropy, using Shanon’s entropy S = −
∑

α pα log pα,

S0 = −p log p− q log q − r log r

= −n+m

2
log

n+m

2
− n−m

2
log

n−m

2
− (1− n) log(1− n)
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Therefore, the variational free energy per spin is, in the unit of zJ ,

f̂ = (⟨H0⟩0 − TS0)/(NzJ)

= −1

2
m2 − gn

+ t×
(
n+m

2
log

n+m

2
+

n−m

2
log

n−m

2
+ (1− n) log(1− n)

)
where g ≡ D/(zJ) and t ≡ T/(zJ). The stationary conditions are

0 =
∂f̂

∂m
= −m+

t

2
log

n+m

n−m
(13)

0 =
∂f̂

∂n
= −g +

t

2
log

(n+m)(n−m)

4(1− n)2
(14)
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For the second order phase transition, we may expand these conditions with
respect to m, which yields

m =
t

2
log

n+m

n−m
=

t

n
m+O(m3)

g

t
= log

n

2(1− n)
+O(m2)

From the first equation, we obtain the transition temperature as a function of n,

tc = n

By replacing n by t in the second equation, we obtain the equation that
determines the critical temperature tc as a function of g:

g = t log
t

2(1− t)
. (15)

Solution of this equation is plotted in the figure.
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So far, we have been assuming that the transition is of the second order, which
means that the order parameter is continuous function of the state parameter,
i.e., limt→tc+0 m(t) = limt→tc−0 m(t). However, this is not the case with the
first order transition. As a result, some part of the phase boundary defined by
(15) is taken over by the first order transition and not realized. The first-order
transition line is determined by the condition that the m = 0 solution and the
m ̸= 0 solution to (13) and (14) have the same free energy.

The detailed analysis is given in papers;
Capel, Physica 32 966 (1966);
Blume, Phys. Rev. 141 517 (1966).
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Figure: The transition line is separated by the point located at (T/zJ,D/zJ) =
( 13 log

1
4 ,

1
3 ) ≈ (−0.462028 · · · , 0.333333 · · · ), which is marked by filled red circle.

Above this point, the purple curve represents the critical (the 2nd order
transition) line whereas the red curve below is the first-order transition line. The
inset is the close-up view.
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Figure: The magnetization.
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