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In this lecture, we see ...

Historically, the statistical mechanics was developed by Boltzmann to
explain macroscopic phenomena from the 1st principle, i.e., Newton’s
law, Schrödinger equation, etc.

However, many cooperative phenomena seem to have good
explanation without referring to the 1st principles.

The essential macroscopic properties can be understood by models in
terms of intermediate-scale degrees of freedom.

Often the same model can describe the essence of multiple
phenomena with completely different microscopic origins.

These observations are reflecting the universality of many-body
systems.

In particular, the universality holds exactly in the critical phenomena.
(universality of critical phenomena)

Statistical Mechanics I: Lecture 1 April 8, 2024 2 / 21



Very brief review of conventional statistical mechanics

Equi-probability principle: P (S) is constant independent of S.

Micro-canonical ensemble: P (S|E) = δE,E(S)/W (E)

Equilibrium with heat-bath: (A: the system, B: the heat-bath)

PAB((SA, SB)|E) = δE,EA(SA)+EB(SB)(WAB(E))−1

PA(SA) =
∑
SB

δE,EA+EB

WAB(E))
=

WB(E − EA(SA))

WAB(E)

Entropy and temperature:

S(E) = logW (E) (extensive), β ≡ 1/T ≡ ∂S

∂E
(intensive)

Canonical ensemble:

PA(SA) ∝ e−βBEA(SA)
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Phenomena described by or related to Ising model

Ferromagnetism ... exchange coupling

Ferroelectrics ... optical phonon

Binary alloys ... change in band structure

Gases ... van der Waals force

Voters’ decision making model ... human psychology

Percolation ... trees catching fire

Potts model ... generalization to higher symmetry
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Ferromagnets

For a ferromagnetic insurator, the magnetic contribution to the total
energy can be (at least approximately) written as

H = −
∑
ij

∑
α,β=x,y,z

JαβS
α
i S

β
j −D

∑
i

(Sz
i )

2 −H
∑
i

Sz
i (1)

where Sα
i is a generator of SU(2) algebra in some irreducible

representation characterized by the magnitude of spin S = 1/2, 1, 3/2, · · · .
The coupling constant Jαβ = Jδαβ for isotoropic coupling. For some
magnets, the anisotropy is easy-axis type and D is positive, in which case,
only two states, Sz

i = ±S, are important. As a result of these, in some
cases one may consider the Ising model

HI = −J
∑
(ij)

SiSj −H
∑
i

Si (2)

represents the ferromagnet at least qualitatively.
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Gases — Real gas

Real gas is described by Schrödinger equation,

HΨ(x1,x2, · · · ,xN ) = EΨ(x1,x2, · · · ,xN ). (3)

The Hamiltonian consists of the kinetic energy and the two-body Coulomb
interactions among nuclei and electrons.

H ≡
∑
i

p2
i

2mi
+
∑
(ij)

V (xi,xj). (4)
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Gases — Lenard-Jones model

In some circumstances, we can neglect quantum nature of atoms and
treat them as classical particle with no internal degree of freedom
(e.g., gas-liquid transition at room temperature).

In such cases, we consider a classical model, such as Lenard-Jones
(LJ) model

VLJ(x,x
′) = 4ϵ

((σ
r

)12
−
(σ
r

)6)
(5)

where r ≡ |x− x′|.
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Gases — Lattice gas

We may simplify the system even further when we focus on the
nature of phase transitions.

For example, by discretizing the space and neglecting the long-range
tail of the Lenard-Jones potential, we obtain the lattice gas model

H = −ϵ
∑
ij

ninj − µ
∑
i

ni (6)

where ni = 0, 1 represents absense/presense of a particle at the site i.
(One can easily verify that this is mathematically equivalent to the
Ising model with a uniform magnetic field.)
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Voters’ decision making model

We consider a group of voters behaving in the following way:
1 Everyone is wondering whether he should vote for Biden or Trump.
2 Everyone is showing his current preference by wearing a blue cap (for

Biden) or a red one (for Trump).
3 At each time t, everyone is looking around himself, and observe the

current average preference m(t) (−1 ≤ m ≤ 1, m = 1 for perfect
preference for Biden and m = −1 for Trump).

4 Observing m(t) influences him in deciding his next preference: the color
of his cap next time is blue with probability (1+ tanh(βm(t)))/2 where
β is a constant representing vorters’ sensitivity to others’ opinions.

Then, we can show that m(t) obeys the following equation of motion:

m(t+ 1) = tanh(βm(t)) (7)

This is exactly identical to the equation of motion of the
magnetization of the Ising model.
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Universality

The magnet, the gas, and the voters may behave according to the
same model.

This observation shows that completely different microscopic
mechanisms may lead to an identical statistical mechanical model,
and the microscopic mechanism influences the macroscopic properties
only through a few parameters. This is a manifestation of the
universality, one of the major subject of the present course.

Moreover, when we focus on the critical phenomena, one can infer
even the exact values of real systems from a very simplified model.
For example, the value of the critical index β is estimated for the
lattice-gas model to be β ≈ 0.3272, and the experimental result can
be fit well by assuming this estimate.

This observation is an example of the universality of critical
phenomena.
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Percolation

Statistical mechanics applies to phenomena whose microscopic
elements are not really microscopic

Phenomena with completely different microscopic origin can be
described by the same (type of) model
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Forest fire and percolation

In a forest fire, a tree catches fire from a burning tree in its
neighborhood. An important question is whether there is a big cluster
of trees in which they are close to each other.

Suppose the forest is a square lattice and that a tree is planted with
probability p on each lattice point.

Let us call the two trees are “connected” when they are nearest
neighbors to each other.

How big is the largest cluster of connected trees? (site-percolation
problem)

In the bond-percolation, every lattice point has a tree, but they are
connected only with probability p.

The largest cluster size is an increasing function of p.

The function has a singular point at p = 0.5. Above this point, the
largest cluster is infinity and remains finite below this point.
(percolation transition).
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Average cluster size in percolation

Let us consider the average cluster size defined by

Vc ≡
〈∑

c V
2
c∑

c Vc

〉
=

1

N

〈∑
c

V 2
c

〉
, (8)

where Vc is the volume (the number of lattice points) of the
connected cluster c in G.

The angular bracket denotes the statistical average,

⟨Q(G)⟩ =
∑

GW (G)Q(G)∑
GW (G)

(9)

where the summation runs over all possible graphs.
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Generating function of bond percolation

The weight W (G) is expressed formally as

W (G) = p|G|(1− p)NB−|G| = (const.)× v|G| (10)

where |G| is the number of the connections in G, NB is the total
number of the nearest neighbor pairs of sites, and v ≡ p/(1− p).

To obtain compact expression of the average cluster size,

Vc =
1

N

〈∑
c

V 2
c

〉
=

1

N

∑
G

p|G|(1− p)NB−|G|
∑
c

V 2
c

=
∂2

∂h2
(1− p)NB

∑
G

v|G|
∑
c

e−hVc

∣∣∣∣∣
h→0

=
1

N
(1− p)NB

∂2

∂h2
ΞBP

∣∣∣∣
h→0
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Relation among percolation, Ising and Potts models

We have seen a few examples in which the statistical mechanics is
applied beyond the tight connection to the microscopic mechanisms.

In the first set of examples, various phenomena was described by the
Ising model whereas in the latter the percolation model was essential.

Now, it may be good to know that these apparently unrelated models
can be also related to each other at least in a mathematical level.
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q-Potts model

We first generalize the Ising model to the Potts model. The extension
is made by replacing binary variables in the Ising model by q-valued
ones.

Hq(S) ≡ −J
∑
(ij)

δSi,Sj −H
∑
i

δSi,1

where

S ≡ {Si}, and Si = 1, 2, · · · , q

It is easy to verify that the q = 2 Potts model is identical to the Ising
model after trivial redefinitions of J and H.
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Introducing the bond variables G in Potts model

By defining K ≡ βJ, h ≡ βH, the partition function is

Zq ≡
∑
S

e−βHq =
∑
S

∏
(ij)

e
KδSi,Sj

∏
i

eh(δSi,1
−q−1) (11)

By introducing a one-bit auxiliary variable gij = 0, 1 for every pair of
nearest-neighbor sites:

e
KδSi,Sj = 1 + (eK − 1)δSi,Sj ≡

∑
gij=0,1

v(gij)δ(gij |Si, Sj) (12)

where

v(0) = 1, and v(1) = eK − 1. (13)

δ(gij |Si, Sj) ≡ δgij ,0 + δgij ,1δSi,Sj (14)
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Partition function as summation w.r.t. S and G

With N1(S) being the number of sites where Si = 1,

Zq =
∑
S

∏
(ij)

∑
gij

v(gij)δ(gij |Si, Sj)e
h
∑

i(δσi,1−q−1) (15)

By using a simplifying notation

V (G) ≡
∏
(ij)

v(gij) and ∆(G|S) ≡
∏
(ij)

δ(gij |Si, Sj) (16)

we obtain

Zq =
∑
S

∑
G

V (G)∆(G|S)eh
∑

i(δσi,1−q−1) (17)

=
∑
G

V (G)
∑
S

∆(G|S)eh
∑

i(δσi,1−q−1) (18)
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Tracing out spin degree of freedom S

G is the set of local graph variables, i.e., G ≡ {gij}.
∆(G|S) = 0, 1 represents “mismatching” or “matching” between G
and S, respectively.

For each cluster in G, let Sc be one of local variables Si (i ∈ c),∑
S

∆(G|S)eh
∑

i(δσi,1−q−1) =
∑
{Sc}

eh
∑

c Vc(δSc,1−q−1)

= e−hNq−1
∏
c

(ehVc + (q − 1)) (19)

Thus, we have arrived at the Fortuin-Kasteleyn formula of the
partition functin of the Potts model,

Zq = e−hNq−1
∑
G

v|G|
∏
c

(ehVc + (q − 1)). (20)
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Fortuin-Kasteleyn formula reveals Ising/percolation relation

The generating function of the bond-percolation can be derived from
Eq.(20) in the limit ϵ ≡ q − 1 → 0:

Z1+ϵ = e−hNq−1
∑
G

v|G|
∏
c

(ehVc + ϵ)

≈ Z1 + ϵe−hNq−1
∑
G

v|G|

(∏
c

ehVc

)∑
c

e−hVc

= Z1 + ϵ
∑
G

v|G|
∑
c

e−hVc = ϵ ΞBP.

⇒ ΞBP = lim
q→1+0

Zq − Z1

q − 1
.

q-Potts model and percolation are related.
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Exercise 1.1: Following the same type of argument leading to the
Fortuin-Kasteleyn formula, show for the Ising model at H = 0 that the
susceptibility

χ ≡ β
(
⟨M2⟩ − ⟨M⟩2

)
(M ≡

∑
i

Si),

is proportional to the average size of the connected clusters.
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