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[12-1] XY model in two dimensions

In two dimensions, continuous spin models cannot have magnetically
ordered state. (Mermin-Wagner theorem)

The XY model, however, has a strange type of phase transition that
does not break the symmetry. (BKT transition)

We can understand this transition by mapping the model into the
Coulomb gas model. In this mapping, the spin vortices in the XY
model corresponds to charges.

By a RGT, we obtain Kosteritz’s RG flow equation, that predicts
special characters of the BKT transition.

Naoki KAWASHIMA (ISSP) Statistical Machanics I July 8, 2019 2 / 25



Mermin-Wagner theorem

Theorem 1 (Mermin-Wagner(1966))

In two dimensions, if the system has a continuous symmetry (represnted
by a compact connected Lie group), it cannot be spontaneously broken at
any finite temperature. [Pfister, Commun. Math. Phys. 79 181 (1981).]

Consider the XY model in two dimensions:

H = −K
∑
(ij)

Si · Sj = −K
∑
(ij)

cos(θi − θj )

where Si ≡ (cos θi , sin θi )
T.

The XY model has the U(1) symmetry with respect to the
transformation θi → θi + α.

Does the theorem prohibit the phase transition in the XY model?
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Berezinskii-Kosterlitz-Thouless transition

A theoretical proposal of a new type of phase transition without
spontaneous symmetry breaking. (Berezinskii (1971),
Kosterlitz-Thouless (1973))

Later the predicted transition was discovered in a thin film experiment
of superfluid He4. (Bishop-Reppy (1978))
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Vortices

A typical configuration of 2-component spins
near or below the transition temperature
consists of a smooth texture with vortices.

The smooth texture allows the approximation,

cos(θi − θj ) ≈ 1− 1

2
|rij · ∇θ|2

Therefore, we expect that the Hamiltonian is

H = −Kad
∑
(ij)

cos(θi − θj )

≈ K

2

∫
dx |∇θ|2 + µNv

where Nv is the total number of vortices.

Embossed in the memorial souvenir

for Prof. Miyashita’s retirement from

U. Tokyo. (June, 2019))
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Stationary configuration and fluctuation around it

Here we introduce a new field variable φ that is the deviation of θ
from its stationary solution Θ for a given vortex configurations:

θ = Θ + φ.

The configuration Θ is determined by the stationary condition, and it
is a harmonic function.

0 = δE =
K

2

∫
dx
{
|∇(Θ + δΘ)|2 − |∇Θ|2

}
= K

∫
dx∇Θ · ∇δΘ = −K

∫
dx 4ΘδΘ

⇒ 4Θ = 0 (Except at vortices)

Note that Θ can be uniquely determined by the vortex configuration.
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Vortex/fluctuation separation

Using Θ, we can separate the vortices from the Gaussian fluctuation:

H =
K

2

∫
dx |∇(Θ + φ)|2 + µNv = Hv +HG.

where

Hv ≡
K

2

∫
dx |∇Θ|2 + µNv

HG ≡
K

2

∫
dx |∇φ|2

(Note that the term ∇φ · ∇Θ does not contribute because of the
stationary condition for Θ.)
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Vortex field Ω

Since Θ is a harmonic function, another harmonic function Ω must

exist such that
∂Ω

∂x
= −∂Θ

∂y
, and

∂Ω

∂y
=
∂Θ

∂x
.

Suppose a region Γ that includes a vortex.

I ≡
∮
∂Γ

d l · ∇Θ = 2πq (q = ±1,±2, · · · )

Since d l · ∇Θ = −dn · ∇Ω,∫
Γ

dx 4Ω =

∫
∂Γ

dn(x) ·∇Ω = −I = −2πq (∵ Gauss’ theorem)

Remembering that 4Ω = 0 almost everywhere,

4Ω = −
∑

i

2πqiδ(x− xi ) = −2πρv(x)
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Coulomb gas (1)

Using Green’s function, G (x), that satisfies 4G (x) = −δ(x), we can
express Ω as

Ω(x) = 2π

∫
dyG (x− y)ρv(y).

The vortex part in Hv can be reformed as

K

2

∫
dx |∇Θ|2 =

K

2

∫
dx |∇Ω|2

= −K

2

∫
dxΩ4Ω = πK

∫
dxΩρv

= 2π2K

∫
dxdyG (x− y)ρv(x)ρv(y)

= 4π2K
∑
(ij)

G (xi − yi )qi qj
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Coulomb gas (2)

Here we introduce the ultra-violet cut-off in the form of the constraint
(on the region of the integral with respect to the vortex positions)
that no two vortices can be within the mutual distance of a.

Using

G (r) ≈ − 1

2π
log r

and the charge neutrality condition (
∑

i qi = 0),

Hv = −2πK
∑
(ij)

log
|xi − xj |

Λ
qi qj + µNv (Λ is arbutrary)

Vortices form a Coulomb-gas.
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Grand partition function (J. M. Kosterlitz: J. Phys. C 7 1046 (1974))

In what follows, we assume that qi = ±1 since vortices |qi | > 1 are
energetically unfavorable and would not yield dominant contribution.
XN ≡ (x1, x2, · · · , xN) and YN ≡ (y1, y2, · · · , yN) are the positions of
positive and negative vortices, respectively.
Then, the grand partition function is

Ξ(ζ, g) =
∑

N

ζ2N

(N!)2
Z a

N(g) (ζ ≡ eµ)

Z a
N(g) ≡

∫
Ω(a)

dXNdYN e−gVN (XN ,YN ) (g ≡ 2πK )

Ω(a) ≡ { (XN ,YN) | Any two elements are apart by more than a }

VN(XN ,YN) ≡ −
∑
(ij)

(v(xi , xj ) + v(yi , yj )) +
∑

ij

v(xi , yj )

v(x, y) ≡ log(|x− y|/Λ)
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Partial trace — Increasing the cut-off a

Following the general program of the RGT, we
first want to take the partial trace with respect
to the short-scale degrees of freedom.

We take the partial integral over the region
∆Ω(a) ≡ Ω(a)− Ω(á) where á ≡ (1 + λ)a.

The region consists of 3 components:

∆Ω(a) ≈
∑

ij

Ω+−
ij (á) +

∑
(ij)

(Ω++
ij (á) + Ω−−ij (á))

Ω+−
ij (á) ≡ { (XN ,YN) ∈ Ω(a) |

All pairs are separated by more than á,

except a < |xi − yj | < á. }
Ω++

ij (á) ≡ · · ·
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Partial trace — Dipole-mediated interaction

The contribution from Ω+− should be dominant.

Z a
N − Z á

N ≈
∑

ij

∫
Ω+−

ij (á)

dXN dYN e−gVN = N2

∫
Ω+−

NN (á)

dXN dYN e−gVN

= N2

∫
Ω(á)

dXN−1dYN−1 e−gVN−1

∫
dxN dyN

a<|xN−yN |<á

e−g
∑

i [∆v(xi )−∆v(yi )]

(∆v(xi ) ≡ v(xi , xN )− v(xi , yN ))

≈ N2

∫
Ω(á)

dXN−1dYN−1 e−gVN−1

×
∫

dxN dyN
a<|xN−yN |<á

1 +
g 2

2

(
N−1∑
i=1

(∆v(xi )−∆v(yi ))

)2


≈
(∗)

N2

∫
Ω(á)

dXN−1dYN−1 e−gVN−1 ×
(

2πa2λL2////////// + 4π2a4λg 2VN−1

)
(contribution to the regular part is omitted)
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Partial trace — Screening effect

Ξ(ζ, g) =
∑

N

ζ2N

(N!)2
Z a

N(g)

≈
∑

N

ζ2N

(N!)2

(
Z á

N(g) + N2

∫
Ω(á)

dXN−1dYN−1 e−gVN−1γg 2λVN−1

)

(γ ≡ 4π2a4; (N − 1)→ N)

=
∑

N

ζ2N

(N!)2

∫
Ω(á)

dXNdYN e−gVN
(
1 + γg 2λζ2VN

)
≈
∑

N

ζ2N

(N!)2

∫
Ω(á)

dXNdYN e−(g−γg2λζ2)VN

The 2nd order perturbation screens the Coulomb interaction

Naoki KAWASHIMA (ISSP) Statistical Machanics I July 8, 2019 14 / 25



Rescaling of the interaction

We rescale the length so that á comes back to a.

x́i =
a

á
xi = e−λxi

By this replacement, the interaction becomes

VN(XN ,YN)

= −
∑
(ij)

(
log

xi − xj

Λ
+ log

yi − yj

Λ

)
+
∑

ij

log
xi − yj

Λ

= −
∑
(ij)

(
log

(x́i − x́j )

Λ
+ log

(ýi − ýj )

Λ
+ 2λ

)
+
∑

ij

(
log

(x́i − ýj )

Λ
+ λ

)
= VN(X́N , ÝN) + (−N(N − 1) + N2)λ

= VN(X́N , ÝN) + Nλ
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Rescaling

Now, we can summarize the RGT as

Ξ(ζ, g)

=
∑

N

ζ2N

(N!)2
e2dNλ

∫
Ω(a)

dX́NdÝN e−(g−γg2ζ2λ)VN (X́N ,ÝN )e−gNλ

=
∑

N

1

(N!)2

(
ζe(d− g

2
)λ
)2N

∫
Ω(a)

dXNdYN e−(g−γg2ζ2λ)VN (XN ,YN )

= Ξ(ζ́, ǵ)× e(regular term)

where

ζ ′ = ζe(d− g
2 )λ and g ′ = g − γg 2ζ2λ

In the form of differential equations,

dζ

dλ
=
(

2− g

2

)
ζ and

dg

dλ
= −γg 2ζ2
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RG flow equation

It is convenient to use x ≡ 2− g/2 instead of g , and focus on the vicinity
of x = ζ = 0.

dζ

dλ
= xζ and

dx

dλ
= −1

2

dg

dλ
≈ 8γζ2

We can remove the factor 8γ by defining y ≡
√

8γζ:
dx

dλ
= y 2

dy

dλ
= xy

(
x = 2− πK

y = (const)× eµ

)
(Kosterlitz’s RG eq.)
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RG flow diagram

The constant of motion of the RG equation

dx

dλ
= y 2,

dy

dλ
= xy

can be given by t ≡ y 2 − x2.

The value of t depends only on the initial
values of the parameter, µ and K = 1/T .
Schematically, the initial points are located
on the t axis.

There are two cases: (t < 0) y goes to zero
(no vortices) and (t > 0) y goes to infinity
(vortex proliferation). The separatorix,
t = 0, corresponds to the BKT transition.
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Solution and correlation length

In the case where t ≡ y 2 − x2 > 0,
dx

dλ
= y 2 = t + x2. This

equation has the solution x(λ) =
√

t tan
(√

t (λ− λ0)
)
.

Note that x0 ≡ x(0) ∼ −O(1), and x(log ξ) ∼ O(1). (∵ In the initial
state, there is no reason to assume that any one of the parameter is
extremely large or small. The same is true for a system with the
correlation length of O(1).)

The first condition means tan(
√

tλ0) ∼ 1√
t
� 1 , which is satisfied

only when
√

tλ0 ∼
π

2
, or, λ0 ∼

π

2
√

t
.

The second condition means log ξ − λ0 ∼
π

2
√

t
.

From these we have

ξ ∼ e
π√

t ∼ exp

(
const√
T − Tc

)
. (More divergent than any power-law)
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Correlation function below the transition temperature

When T < Tc , the system flows to the vortex free states, i.e., it is
asymptotically described by the Gaussian fixed-point Hamiltonian.

Therefore, the 2-point correlation function is

〈Sx (x)Sx (y) + Sy (x)Sy (y)〉 = 〈e i(φ(x)−φ(y))〉

= Z−1
G

∫
dφ e−

K
2

∫
dx|∇φ|2−iω·φ

where ω(x) ≡ 1, ω(y) ≡ −1, and ω(r) ≡ 0 everywhere else.

The lattice Lapracian is the inverse of the lattice Green function,
G (x, y) = G (r) ∼ − 1

2π log r +(const) (r ≡ |x− y|). Therefore,

= Z−1
G

∫
dφ e−

K
2
φTG−1φ−iω·φ

= e−
1

2K
ωTGω = e−

1
K

(G(0)−G(r)) ∝ r−
1

2πK .
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Universal jump

Thus, we have obtained the correlation function ∼ r−η with

η =
1

2πK
=

kBT

2πJ
.

This type of correlation is called “quasi-long-range order”.

In particular, at the transition point, Kc ≡ 2
π , the exponent takes a

universal value, η(K = Kc ) = 1/4.

In the context of 2D superfluidity, the superfulid density ρs is, when it
is finite, related to K as

K =
~2ρs

mkBT

where m is the mass of a constituent particle. Therefore, ρs has a
jump with a universal magnitude at the BKT transition.
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Supplement: Screeing by dimers

I ≡
∫

a<|xN−yN |<á
dxdy

∑
ij

(∆v(xi )−∆v(yi ))(∆v(xj )−∆v(yj ))

We use approximation

∆v(r) ≡ log(r − xN )− log(r − yN ),≈ − xi − xN

|xi − xN |2
· d. (d ≡ yN − xN .)

Consider a single term

Iij ≡
∫

a<|xN−yN |<á

dxdy
∑

ij

∆v(xi )∆v(yi )

≈
∫

dxN

∫
a<|d|<á

dd

(
xi − xN

|xi − xN |2
· d
)(

yi − xN

|yi − xN |2
· d
)

= 2πa4λ

∫
dxN

xi − xN

|xi − xN |2
· yi − xN

|yi − xN |2
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Supplement: Screeing by dimers (2)

Iij (xi , yj ) ≈ 2πa4λ

∫
dxN

xi − xN

|xi − xN |2
· yi − xN

|yi − xN |2

≈
(∗)

2π log
L

|xi − yj |

I =
∑

ij

(Iij (xi , xj ) + Iij (yi , yj )− Iij (xi , yj )− Iij (yi , xj ))

= 2πa4λ

4π

∑
(ij)

(v(xi , xj ) + v(yi , yj ))−
∑

ij

v(xi , yj )




= 8π2a4λ× VN−1(XN−1,YN−1)
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Supplement: An integral formula

I ≡
∫

dx
cos θ

R1R2

=

∫
dx

R2 − r 2/4

(( r
2 )2 + R2)2 − r 2R2 cos2 φ

I =

∫ L

0

dR R
R2 − r 2/4

4

×
∫ 2π

0

dφ

(r 2/4 + R2)2 − r 2R2 cos2 φ

=

∫ L

0

dR
2πR

R2 + r 2/4
= π log

L2 + r 2/4

r 2/4
≈ 2π log

L

r

We’ve used
∫ 2π

0

dφ

a + b cos2 φ
=

2π√
a(a + b)

.
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Summary

The XY model is mapped to a composite system of vortices and
fluctuations.

The vortices behave as a 2D Coulomb gas.

The fluctuations are governed by the massless Gaussian model.

The RGT to the 2D Coulomb gas yields a set of RG flow equation.

Above the transition temperature, the correlation length diverges as
ξ ∼ exp(c/

√
T − Tc).

Below the transition temperature, the system flows into the
vortex-less Gaussian FP, where the spin-spin correlation obeys
power-low with the exponent η varying with temperature.

Its value is 1/4 at the transition point. This means the universal jump
in the superfluid density.
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