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In this lecture, we see ...

By applying the perturbative RG to GFP, we will find a new fixed
point near the GFP. (Wilson-Fisher fixed point (WFFP))

By replacing the GFP and the WFFP by their multi-component
counterparts, we can obtain the ε-expansion of the universality classes
of the XY model (n = 2) and of the Heisenberg model (n = 3).
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[10-1] Wilson-Fisher fixed point

By inspecting the RG flow equation around GFP, we can obtain an
ε(≡ 4− d) dependent fixed point and its scaling properties to the first
order in ε (ε-expansion).

From this result one can obtain the lowest order approximation to the
Wilson-Fisher fixed point, which is suppose to (exactly) describe the
Ising universality class in dimensions 2 < d < 4.
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RG flow equation around GFP

Now, we are ready to actually compute the RG flow around the GFP
searching for a new fixed point for the φ4 model.

Our tool is the RG flow equation around a fixed point.

dgn
dλ

= yngn −
∑
lm

cnlmglgm + O(g3) (λ ≡ log b) (1)

For the GFP, we already know

φn ≡ [[φn]], yn = d − xn, xn = nx =
n

2
(d − 2)

cnlm ≡
(
l

k

)(
m

k

)
k!

(
k ≡ l + m − n

2

)
(2)
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The Z2 symmetry

Let us focus on the relevant fields at the GFP:

h ≡ g1, t ≡ g2, v ≡ g3, u ≡ g4

Note that (1) and (2) ensures that when we start with even fields
only, odd fields are not generated by the RGT.

In addition, we know that the critical point of the Ising model
possesses the symmetry with respect to S ↔ −S .

Therefore, we expect that the fixed point representing the Ising
criticality should be found in the “even parity” manifold, i.e.,
h = v = 0.
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ε-expansion

In terms of the remaining fields, t and u, the flow equations are

dt

dλ
= ytt − ctttt

2 − 2cttutu − ctuuu
2 + O(g3) (3)

du

dλ
= yuu − cuttt

2 − 2cututu − cuuuu
2 + O(g3) (4)

with yt = 2 and yu = 4− d ≡ ε.

Hereafter, we regard ε as a small quantity.

Let (t∗, u∗) be the non-trivial solution to the fixed-point equation,
i.e., they are not zero and make the RHSs of (3) and (4) zero.

By considering the order in ε, we see t∗ = O(ε2) and u∗ = O(ε).
(∵ By perturbation assuption, both u∗ and t∗ are small. Then, in (3), the only term that

can possibely be the same order as t is u2. Therefore, t∗ ∼ u∗2. With this in mind,

inspecting (4) we see that εu must be comparable to u2, so u∗ ∼ O(ε).)
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Wilson-Fisher fixed point

Now, only keeping the terms that can make difference, we obtain

dt

dλ
= 2t − 96u2 − 24tu (≡ A) (5)

du

dλ
= εu − 72u2 − 16tu (≡ B) (6)(

ctuu =

(
4

3

)(
4

3

)
3! = 96, cuuu =

(
4

2

)(
4

2

)
2! = 72, etc.

)
Then, the fixed point is

(t∗, u∗) =

(
ε2

108
,
ε

72

)
(7)

We regard this as the lowest order approximation to the new fixed
point that we’ve been seeking for. (Wilson-Fisher fixed point
(WFFP))
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Linearization around the WFFP

To obtain the scaling properties of the WFFP, we need to re-expand
the series-expansion around the WFFP.

So, let us define

∆u ≡ u − u∗

∆t ≡ t − t∗

and recast (5) and (6) in the form
d

dλ

(
∆t

∆u

)
= Y

(
∆t

∆u

)
.

Obviously, the matrix Y can be obtained as

Y ≡
(
∂A
∂t

∂A
∂u

∂B
∂t

∂B
∂u

)
∆t=∆u=0

=

(
2− 24u∗ −192u∗

−16u∗ ε− 144u∗

)
=

(
2− 1

3ε −
8
3ε

−2
9ε −ε

)
.
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Scaling properties of the WFFP

Thus, the linearized RG flow equation around
the new fixed point is

d

dλ

(
∆t

∆u

)
=

(
2− 1

3ε −
8
3ε

−2
9ε −ε

)(
∆t

∆u

)
.

Since the off-diagonal elements do not
contribute to the eigenvalues to O(ε),

yWF
u = −ε and yWF

t = 2− ε

3

The “t-like” scaling field is relevant.

y3DWF
t ≈ 1.666 · · ·

(
y3DIsing
t ≈ 1.59,

)
y2DWF
t ≈ 1.333 · · ·

(
y2DIsing
t = 1

)
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Scaling eigenvalue of h at WFFP

Writing down the RG flow equation for h, which has been neglected
so far,

dh

dλ
= yhh − 2chthth + (u2h-term) =

d + 2

2
h − 4th + · · ·

≈
(
d + 2

2
− 4t∗ + · · ·

)
h

Therefore, yWF
h =

d + 2

2
+ O(ε2). In other words,

ηWF = 2xWF
h − d + 2 = d + 2− 2yWF

h = 0 + O(ε2).

This should be compared with

η3dIsing = 0.022(3) and η2dIsing = 0.25
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Irrelevancy of other operators

Even if some field is irrelevant at the GFP, it
may turn relevant at the WFFP. If so, it alters
the final destination of the RG flow, in which
case the WFFP is not the contoring FP.

The RG flow equation for gn around the GFP is

dgn
dλ

=
(
d − n

2
(d − 2)

)
gn−12n(n−1)ugn,

Remembering that u∗ = ε/72,

yWF
n =

(
d − n

2
(d − 2)

)
−12n(n−1)

4− d

72

For n ≥ 6, we have negative yn:

yWF
n =

18− 2n − n2

6
(d = 3),

6 + n − n2

3
(d = 2).
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[10-2] O(n) models

To apply the perturbative RG to the XY (O(2)) and the Heisenberg
(O(3)) models we will introduce the multi-component φ4 model.

We can then construct the RG flow equation as before.
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Multi-component φ4 model

Let us apply the perturbative RG to the XY (O(2)) or the Heisenberg
(O(3)) models.

To follow the same line of argument as before, we need something
analogous to the φ4 model to start with.

So, let us consider multi-component field

φ(x) ≡
(
φ1(x), φ2(x), · · · , φn(x)

)T

and the multi-component φ4 model:

H ≡
∫

dx
(
|∇φ|2 + tφ2 + u(φ2)2 − hφ1

)
If t = u = h = 0, the n-components are independent and each
represents a Gaussian fixed point. Therefore, it is a fixed point for the
new Hamiltonian. (We call this fixed point the GFP, too.)
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Correlation functions

To get familiarized with the new model, let us consider
〈φ2(x)φ2(y)〉GFP .

Since we can use Wick’s theorem for the multi-component GFP,

〈φ2(x)φ2(y)〉
= 〈φα(x)φα(x)φβ(y)φβ(y)〉 (Einstein’s convention)

= 〈φα(x)φα(x)〉〈φβ(y)φβ(y)〉
+ 2〈φα(x)φβ(y)〉〈φα(x)φβ(y)〉

= n2G 2(0) + 2nG 2(r)

where r ≡ |x− y| and G (r) ≡ 〈φ1(x)φ1(y)〉 ≈ r−2x as usual.
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Diagramatic representation

We have seen that

〈φ2(x)φ2(y)〉 = n2G 2(0) + 2nG 2(r)

Compared with the previous case of n = 1,
the difference is the factors n2 and n.

For a given pattern of Wick paring, draw
the diagram like the one in the right:

wavy lines ↔ repeated indices
regular lines ↔ Wick paring

To the term represented by a diagram with
g loops, we assign the factor ng .
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Scaling operator φ2

As before, we can define the normal-order
product, [[· · ·]], as the operator that we
obtain after removing all contributions from
the diagrams with inner connections.

For example,

φ2 ≡ [[φ2]] = φ2 − nG 2(0)

For the correlator of two φ2s, we have

〈φ2(x)φ2(y)〉 = 2nG 2(r)

(See the diagram on the right.)
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Scaling operator φ4

Similarly, we define φ4 as

φ4(x) ≡
[[(

φ2(x)
)2
]]

Then, the correlator becomes

〈φ4(x)φ4(y)〉
= (Two-loop terms)

+ (One-loop terms)

= 8n2G 4(r) + 16nG 4(r)

= (8n2 + 16n)G 4(r)
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cutt , c
t
tt , c

u
tu, c

t
tu for O(n) GFP

First, let us expand φ2(x)φ2(y).

φ2(x)φ2(y)

≈ φ4(x) + 4G (r)φ2(x) + · · · .

Thus, we obtain cutt = 1 and cttt = 4 .

For φ2(x)φ4(y), we obtain

φ2(x)φ4(y)

= φ6(x) + 8G (r)φ4(x)

+ 4nG 2(r)φ2(x) + 8G 2(r)φ2(x)

= φ6 + 8Gφ4 + (4n + 8)G 2φ2 + · · · .

We obtain cutu = 8 and cttu = 4(n + 2) .
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Wilson-Fisher FP for O(n) GFP

The RG flow equation is{
dt
dλ = 2t − 32(n + 2)u2 − 8(n + 2)tu ≡ A
du
dλ = εu − 8(n + 8)u2 − 16tu ≡ B

⇒ (t∗, u∗) =

(
ε2

4(n + 8)2
,

ε

8(n + 8)

)
The flow equation for t around WFFP is

dt

dλ
= (2− 8(n + 2)u∗)t ⇒ yWF

t = 2− n + 2

n + 8
ε

For h, we have

dh

dλ
= (yG

h + O(ε2))h =
d + 2

2
h

⇒ yWF
h =

d + 2

2
= 3− ε

2
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ε-expansion summary

Ising XY Heisenberg
(n = 1) (n = 2) (n = 3)

ε-exp. true ε-exp. true ε-exp. true

4D
yt 2 2 2 2 2 2
yh 3 3 3 3 3 3

3D
yt 1.67 1.59 1.60 1.49 1.55 1.41
yh 2.5 2.48 2.5 2.48 2.5 2.49

2D
yt 1.33 1 1.20 — 1.09 —
yh 2.0 1.875 2.0 — 2.0 —
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Summary

By applying the perturbative RG to GFP, we have found a new fixed
point near the GFP. (Wilson-Fisher fixed point (WFFP))

We can apply the same perturbative argument to the n-component
field φ, resulting in the ε-expansion of the universality classes of the
XY model (n = 2) and of the Heisenberg model (n = 3). In 3D, the
estimates of scaling dimesnions were surprisingly good, whereas even
in 2D, they are not so far from the correct values.
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Homework

Obtain the OPE of φu(x)φu(y) at the GFP, and show that

cuuu = 8(n + 8) and ctuu = 32(n + 2)
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