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In this lecture, we see ...

@ By applying the perturbative RG to GFP, we will find a new fixed
point near the GFP. (Wilson-Fisher fixed point (WFFP))

@ By replacing the GFP and the WFFP by their multi-component
counterparts, we can obtain the e-expansion of the universality classes
of the XY model (n = 2) and of the Heisenberg model (n = 3).
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[10-1] Wilson-Fisher fixed point

@ By inspecting the RG flow equation around GFP, we can obtain an
€(= 4 — d) dependent fixed point and its scaling properties to the first
order in € (e-expansion).

@ From this result one can obtain the lowest order approximation to the
Wilson-Fisher fixed point, which is suppose to (exactly) describe the
Ising universality class in dimensions 2 < d < 4.
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RG flow equation around GFP

@ Now, we are ready to actually compute the RG flow around the GFP

searching for a new fixed point for the ¢* model.
@ Our tool is the RG flow equation around a fixed point.

dgn
d\

= Yn8n — Z cl gigm+ 0(g%) (M =logh)

Im

@ For the GFP, we already know

(d-2)

¢”EII¢”]L yn:d—xm Xp = NX =

<-()Or (-25)
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The Z, symmetry
@ Let us focus on the relevant fields at the GFP:

hEglv t=g, Vv=g3 U=g
o Note that (1) and (2) ensures that when we start with even fields
only, odd fields are not generated by the RGT.

@ In addition, we know that the critical point of the Ising model
possesses the symmetry with respect to S <> —S.

@ Therefore, we expect that the fixed point representing the Ising
criticality should be found in the “even parity” manifold, i.e.,
h=v=0.
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e-expansion

@ In terms of the remaining fields, t and u, the flow equations are

dt
a = ytt - CtFtt2 - 2Cttutu - CLt;uu2 + O(g3) (3)
d
d_;I\ :yuu_ctytt2_2Clelutu_cbluu2+o(g3) (4)

with vy =2 and y, =4 —d=e.
@ Hereafter, we regard € as a small quantity.

o Let (t*, u*) be the non-trivial solution to the fixed-point equation,
i.e., they are not zero and make the RHSs of (3) and (4) zero.

@ By considering the order in ¢, we see t* = O(e?) and u* = O(e).
(.- By perturbation assuption, both u* and t* are small. Then, in (3), the only term that
can possibely be the same order as t is u?. Therefore, t* ~ u*2. With this in mind,

inspecting (4) we see that eu must be comparable to u?, so u* ~ O(¢).)

Naoki KAWASHIMA (ISSP) Statistical Machanics | June 24, 2019 6 /22



Wilson-Fisher fixed point

@ Now, only keeping the terms that can make difference, we obtain

dt

— =2t — 2 _24 =A

X t —96u tu (= A) (5)
du

— =eu—T2u° -1 =B

7% = 72u 6tu (= B) (6)

(Yo a- (Y <)

@ Then, the fixed point is

) = (15555 )

@ We regard this as the lowest order approximation to the new fixed
point that we've been seeking for. (Wilson-Fisher fixed point

(WFFP))
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Linearization around the WFFP

@ To obtain the scaling properties of the WFFP, we need to re-expand
the series-expansion around the WFFP.

@ So, let us define

Au=u—u*
At=t—t*

, d (At At
and recast (5) and (6) in the form Y (Au) = Y(Au)'

@ Obviously, the matrix Y can be obtained as

Y= (t%_g g)_g) — (2_24U* —192u* )
58 0B ) e\ 160 e 144w
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Scaling properties of the WFFP

@ Thus, the linearized RG flow equation around
the new fixed point is

d (At (2-3e -5\ (At
di\\Au) — \ -3¢  —¢ ) \Au)
@ Since the off-diagonal elements do not
contribute to the eigenvalues to O(e),

€
yWF— _¢ and y;NF:2—§

@ The “t-like" scaling field is relevant.

y3OWF 1,666 - - - (ny'si”g ~ 1.59,)

OV~ 1333 (200 = 1)
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Scaling eigenvalue of h at WFFP

@ Writing down the RG flow equation for h, which has been neglected

so far,
dh )
o ynh — 2chth + (u?h-term) = d%h —Ath+ .-
~ (%—41“*—1—---) h
d+2
o Therefore, y'" = % + O(€?). In other words,

VP =2"F —d+2=d+2-2"F =0+ O().

This should be compared with

PS8 = 0.022(3) and n?9" =0.25

Naoki KAWASHIMA (ISSP) Statistical Machanics | June 24, 2019 10 / 22



Irrelevancy of other operators

o Even if some field is irrelevant at the GFP, it ?Jf

may turn relevant at the WFFP. If so, it alters A e
the final destination of the RG flow, in which IR \WL o

@At
case the WFFP is not the contoring FP. g |

@ The RG flow equation for g, around the GFP is ETT/%V ;Nf =
dg, n | ;

8 (d - 2(d- 2)) gn—12n(n—1)ugn, | T

WA £
L !
e Remembering that u* = €/72, |@\ﬁ SE

n 4—d G'FJF*:*_ e
| |
e For n > 6, we have negative y,: J ‘
18 — 2n — n? 6+ n— n?
= = (0=3), T (d=2)

Naoki KAWASHIMA (ISSP) Statistical Machanics | June 24, 2019 11 /22



[10-2] O(n) models

o To apply the perturbative RG to the XY (O(2)) and the Heisenberg
(O(3)) models we will introduce the multi-component ¢* model.

@ We can then construct the RG flow equation as before.
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Multi-component ¢* model

@ Let us apply the perturbative RG to the XY (O(2)) or the Heisenberg
(0(3)) models.

@ To follow the same line of argument as before, we need something
analogous to the ¢* model to start with.

@ So, let us consider multi-component field

B(x) = (41(x), $2(x),- -~ , 0" ()"

and the multi-component ¢* model:

H= /dx (Vo + td” + u(¢?)* — hg')

e If t = u= h=0, the n-components are independent and each
represents a Gaussian fixed point. Therefore, it is a fixed point for the
new Hamiltonian. (We call this fixed point the GFP, too.)
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Correlation functions

@ To get familiarized with the new model, let us consider

(#*(x)*(¥))crp -

@ Since we can use Wick’s theorem for the multi-component GFP,

(@*(x)*(y))
= (¢p*(x)p“(x)¢?(y)¢’(y)) (Einstein’s convention)
= (¢*(x)0™(x))(6”(¥)¢” (¥))
+2(0%(x)0” (y)) (6" ()" (y))
= n?G%(0) 4+ 2nG?(r)

where r = [x —y| and G(r) = (¢*(x)p*(y)) = r> as usual.
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Diagramatic representation

@ We have seen that

(p2(x)9*(y)) = n*G2(0) + 2nG>(r) <& 60 ¢y dlp)

e Compared with the previous case of n =1,  _ E@ @ e,
the difference is the factors n? and n. £l 5
Er U .
o For a given pattern of Wick paring, draw + _‘\/ ‘ ul n &)
the diagram like the one in the right: )
B .
wavy lines <> repeated indices + @><@ n Crir)

regular lines < Wick paring

= o
= NG o) + 2N Glr)

@ To the term represented by a diagram with
g loops, we assign the factor né.

Naoki KAWASHIMA (ISSP) Statistical Machanics | June 24, 2019 15 / 22



Scaling operator ¢,

. )T
@ As before, we can define the normal-order [ [\z‘s |
product, [-- -], as the operator that we W;*jw .
obtain after removing all contributions from ¥ ;
. o . o ) Wy
the diagrams with inner connections. @ 2)
@ For example, £ ki
< Palw) fo () 2
02 = [#7] = ¢ ~ nc2(0) o
- {0
@ For the correlator of two ¢»s, we have
, + |3 ><9
(92(x)2(y)) = 2nG"(r)
= Z=x Grz(r)

(See the diagram on the right.)
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Scaling operator ¢4

@ Similarly, we define ¢4 as gty baty))
e
6a(x) = [(°(0))’] . 3% —

@ Then, the correlator becomes 7 4
+ |7 + -
(@a(x)@a(y)) i
= (Two-loop terms) e
= 0y (0
+ (One-loop terms)
= 8n°G*(r) +16nG*(r)

= (8n° +16n)G*(r)

73
TIEM G ()
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u t u t
Cit, Ciys Clys Cryy for O(n) GFP b, () da(3)

«,?N «
o First, let us expand ¢2(x)p2(y). =l Tty
P2(x)p2(y) = J
~ ¢a(x) +4G(r)pa(x) + - . B aéb
X 2
Thus, we obtain ¢t =1 and cf, =4 . N
@ For ¢2(x)pa(y), we obtain 1@7 -
$2(x)Pa(y) = 3% + 3(%‘
— B6(x) + 8G(r)a(x) s
4G Nea(x) + BGANea(x)  w
= ¢6+8Gds + (4n+8)Gho+ -+ . +9(§>j/+3§
el I
We obtain ¢f, =8 and c}, =4(n+2). é;% léj;
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Wilson-Fisher FP for O(n) GFP

@ The RG flow equation is

{ gt =2t —32(n+2)u?—8(n+2)tu
du

A
M =eu—8(n+8)u?— 16tu B

= (t%v") = (4(ni 8)2’ 8(”eJr 8)>

@ The flow equation for t around WFFP is

dt WF n+2
Y =(2-8(n+2)u")t =y —2—n+86
@ For h, we have
dh 5 d+2
d—+2 €
wF_ 91T 5 €
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€-expansion summary

Ising XY Heisenberg

(n=1) (n=2) (n=3)
e-exp. true €-exp. true | e-exp. true

Ve || 2 2 2 2 2 2

4D yoll 3 3 3 3 3 3
3D ve || 1.67 1.59 1.60 1.49 | 1.55 1.41
Yh |l 2.5 2.48 2.5 248 | 25 2.49

2D ve || 1.33 1 1.20 — 1.09 —
v || 2.0 1.875 | 2.0 — 2.0 —
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Summary

@ By applying the perturbative RG to GFP, we have found a new fixed
point near the GFP. (Wilson-Fisher fixed point (WFFP))

@ We can apply the same perturbative argument to the n-component
field ¢, resulting in the e-expansion of the universality classes of the
XY model (n = 2) and of the Heisenberg model (n = 3). In 3D, the
estimates of scaling dimesnions were surprisingly good, whereas even
in 2D, they are not so far from the correct values.
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Homework

@ Obtain the OPE of ¢,(x)¢,(y) at the GFP, and show that

cl,=8(n+8) and c,=32(n+2)
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