Lecture 3: ϕ^{4} theory and Ornstein-Zernike form

Naoki KAWASHIMA ${ }^{1}$

${ }^{1}$ ISSP, U. Tokyo

April 22, 2019

To begin with ...

- The mean-field theory discussed in the previous section does not tell us about the spatial correlation.
- In this lecture, starting from the Ising model, we derive ϕ^{4} model, which, we expect, the same long-range behavior as the Ising model.
- We then apply the GBF variational approximation to the ϕ^{4} Hamiltonian, to obtain the mean-field expression for the two-point correlation function. (Ornstein-Zernike form)

[3-1] ϕ^{4} field theory

- We first see a very "hand-waving" derivation of ϕ^{4} field theory starting from the Ising model and using the coarse-graining.
- We next see an alternative derivation which looks less hand-waving, based on the Hubbard-Stratonovich transformation.
- Since the ϕ^{4} theory is obtained by the coarse-graining of the Ising model, they are supposed to share the same long-range behavior, while they may differ quantitatively for short-range physics.
- In particuar, we expect, ϕ^{4} model belongs to the same universality class as the Ising model, as has been verified by a number of arguments and numerical calculations.

A hand-waving derivation by coarse-graining (1)

- Let us consider the Ising model on d-dimensional hyper-cubic lattice. (Hereafter, we use symbols like \mathbf{r} and \mathbf{R} to spacify lattice points in stead of i and j.)
- Divide the whole lattice into cells of size $a b$, where a is the lattice constant, and denote the one located at \mathbf{R} as $\Omega_{a b}(\mathbf{R})$. $(b \gg 1)$
- Consider the cell average of spins

$$
\begin{equation*}
\phi_{\mathbf{R}}=\left(\frac{1}{b}\right)^{d} \sum_{\mathbf{r} \in \Omega_{a b}(\mathbf{R})} S_{\mathbf{r}} \tag{1}
\end{equation*}
$$

- Consider the coarse-grained Hamiltonian $\tilde{\mathcal{H}}$ defined as

$$
e^{-\tilde{\mathcal{H}}(\phi)} \equiv \sum_{\mathbf{S}} \Delta(\mathbf{S} \mid \phi) e^{-\mathcal{H}(\mathbf{S})}
$$

where $\phi \equiv\left\{\phi_{\mathbf{R}}\right\}, \mathbf{S} \equiv\left\{S_{r}\right\}$, and $\Delta(\mathbf{S} \mid \phi)(=0,1)$ takes 1 if and only if the condition (1) is satisfied for all cells.

A hand-waving derivation by coarse-graining (2)

- Let us guess, by intuition, what $\tilde{\mathcal{H}}$ should be like.
- There must be two parts: a single-cell part reflecting the physics inside each cell and a multiple-cell part for interactions.
- For one-cell part, the entropic effect gives rise to ϕ^{2} and ϕ^{4} terms (as in means-field approx.) whereas the interaction will produce $-\phi^{2}$.
- For multiple-cell part, the interaction among cells is represented by terms that depend on the gradient, $\nabla_{\mathbf{R}} \phi$. The mirror-image symmetry allows only even order terms. So, we expect $|\nabla \phi|^{2}$ in the lowest order.
- Putting these together and including the Zeeman term, we obtain

$$
\begin{align*}
\tilde{H}(\phi) & \equiv a^{d} \sum_{\mathbf{R}}\left(\rho|\nabla \phi|^{2}+t \phi^{2}+u \phi^{4}-h \phi\right) \tag{2}\\
& =\int_{a}^{L} d^{d} \mathbf{R}\left(\rho|\nabla \phi|^{2}+t \phi^{2}+u \phi^{4}-h \phi\right) \tag{3}
\end{align*}
$$

(ρ, u are positive constants. t can be either positive or negative, depending on the temperature.)

Derivation by the Hubbard-Stratonovich transformation

$$
\begin{aligned}
Z_{\text {Ising }} & =\sum_{S} e^{K \sum_{\left(r, r^{\prime}\right)} S_{\mathbf{r}} S_{\mathbf{r}^{\prime}}}=\sum_{S} e^{\frac{K}{2} \mathbf{S}^{\top} C \mathbf{S}-\frac{C K N}{2}}\left(C_{\mathbf{r}, \mathbf{r}^{\prime}}=\left\{\begin{array}{cc}
c & \left(\left|\mathbf{r}-\mathbf{r}^{\prime}\right|=0\right) \\
1 & \left(\left|\mathbf{r}-\mathbf{r}^{\prime}\right|=a\right) \\
0 & (\text { (otherwise })
\end{array}\right)\right. \\
& \stackrel{*}{=} \sum_{S} \int D \phi e^{-\frac{1}{2 K} \phi^{\top} C^{-1} \phi+\phi \mathbf{S}} \quad \text { (HS transformation) } \\
& =\int D \phi e^{-\frac{1}{2 K} \phi^{\top} C^{-1} \phi} \prod_{\mathbf{r}}\left(2 \cosh \phi_{\mathbf{r}}\right) \\
& \stackrel{*}{\approx} \int D \phi e^{-K^{-1} \sum_{\mathbf{r}}\left(\alpha \phi_{\mathbf{r}}^{2}+\beta\left(\nabla \phi_{\mathbf{r}}\right)^{2}\right)} e^{-\sum_{\mathbf{r}}\left(-\frac{1}{2}\left(\phi_{\mathbf{r}}\right)^{2}+\frac{1}{12}\left(\phi_{\mathbf{r}}\right)^{4}\right)} \\
& =\int D \phi e^{-\tilde{\mathcal{H}}(\phi)}=Z_{\phi^{4}} \\
\tilde{\mathcal{H}}(\phi) & =\sum_{\mathbf{r}}\left(\frac{\beta}{K}\left|\nabla \phi_{\mathbf{r}}\right|^{2}+\left(\frac{\alpha}{K}-\frac{1}{2}\right)\left|\phi_{\mathbf{r}}\right|^{2}+\frac{1}{12}\left|\phi_{\mathbf{r}}\right|^{4}\right)
\end{aligned}
$$

Supplement: Hubbard-Stratonovich transformation (1)

For an arbitrary positive definite symmetric matrix A and a vector \mathbf{B}, we can show the following,

$$
\begin{aligned}
\int D & \phi e^{-\frac{1}{2} \sum_{\mathbf{r}, r^{\prime}} A_{\mathbf{r}, r^{\prime}} \phi_{\mathbf{r}} \phi_{\mathbf{r}^{\prime}}+\sum_{\mathbf{r}} B_{\mathbf{r}} \phi_{\mathbf{r}}} \\
& =\int D \phi e^{-\frac{1}{2} \phi^{\top} A \phi+\mathbf{B}^{\top} \phi} \\
& =\int D \boldsymbol{\xi}|A|^{-1 / 2} e^{-\frac{1}{2} \xi^{\top} \boldsymbol{\xi}+\boldsymbol{\eta}^{\top} \boldsymbol{\xi}} \quad\left(\boldsymbol{\xi} \equiv A^{1 / 2} \boldsymbol{\phi}, \boldsymbol{\eta} \equiv A^{-1 / 2} \mathbf{B}\right) \\
& =\int D \boldsymbol{\xi}|A|^{-1 / 2} e^{-\frac{1}{2}(\boldsymbol{\xi}-\boldsymbol{\eta})^{2}+\frac{1}{2}(\boldsymbol{\eta})^{2}} \\
& =(2 \pi)^{\frac{N}{2}}|A|^{-1 / 2} e^{\frac{1}{2}(\boldsymbol{\eta})^{2}}=(2 \pi)^{\frac{N}{2}}|A|^{-1 / 2} e^{\frac{1}{2} \mathbf{B}^{\top} A^{-1} \mathbf{B}}
\end{aligned}
$$

By taking $K C$ for A^{-1} and \mathbf{S} for \mathbf{B},

$$
e^{\frac{K}{2} \mathbf{S}^{\top} C \mathbf{S}} \sim \int D \phi e^{-\frac{1}{2 K} \phi^{\top} C^{-1} \phi+\phi^{\top} \mathbf{S}}
$$

Supplement: Hubbard-Stratonovich transformation (2)

The matrix C is defined as $C \equiv c l+\Delta$ where Δ is the connection matrix

$$
\Delta_{r, r^{\prime}} \equiv \begin{cases}1 & \left(\left|\mathbf{r}-\mathbf{r}^{\prime}\right|=a\right) \\ 0 & (\text { Otherwise })\end{cases}
$$

We need its inverse, which we can compute as

$$
\begin{aligned}
C^{-1} & =\frac{1}{c}\left(I+\frac{1}{c} \Delta\right)^{-1} \\
& =\frac{1}{c}\left(I-\frac{1}{c} \Delta+\frac{1}{c^{2}} \Delta^{2}+\cdots\right)
\end{aligned}
$$

This decays exponentially as a function of distance; truncation would not change things qualitatively, leading to what have been used in the main text

$$
C^{-1} \approx \frac{1}{c} I-\frac{1}{c^{2}} \Delta \quad\left(\phi^{\top} C^{-1} \phi \approx \sum_{\mathbf{r}}\left(\frac{1}{c}\left(\phi_{\mathbf{r}}\right)^{2}+\frac{1}{2 c^{2}}(\nabla \phi)^{2}\right)\right)
$$

The meaning of ϕ in the HS derivation

For an arbitrary vector $\boldsymbol{\xi}$, we have

$$
\begin{aligned}
& \left\langle\boldsymbol{\xi}^{\top} \mathbf{S}\right\rangle_{\text {Ising }}=Z_{0}^{-1} \frac{\partial}{\partial h} \sum_{\mathbf{S}} e^{\mathbf{s}^{\top} K \mathbf{S}+h \boldsymbol{\xi}^{\top} \mathbf{S}} \\
& =Z_{0}^{-1} \frac{\partial}{\partial h} \int D \phi \sum_{\mathbf{S}} e^{-\frac{1}{2} \phi^{\top} K^{-1} \phi+\phi^{\top} \mathbf{S}+h \xi^{\top} \mathbf{S}} \quad \text { (HS transformation) } \\
& =Z_{0}^{-1} \frac{\partial}{\partial h} \int D \phi^{\prime} \sum_{\mathbf{S}} e^{-\frac{1}{2}\left(\phi^{\prime}-h \boldsymbol{\xi}\right)^{\top} K^{-1}\left(\phi^{\prime}-h \boldsymbol{\xi}\right)+\phi^{\top} \mathbf{\top}} \quad\left(\phi^{\prime} \equiv \phi+h \boldsymbol{\xi}\right) \\
& =Z_{0}^{-1} \frac{\partial}{\partial h} \int D \phi^{\prime} \sum_{\mathbf{S}} e^{-\frac{1}{2} \phi^{\top} K^{-1} \phi^{\prime}+h \xi^{\top} K^{-1} \phi^{\prime}+\phi^{\top} \mathbf{S}} \quad \text { (Expand in } h \text {) } \\
& =Z_{0}^{-1} \int D \phi e^{-\tilde{\mathcal{H}}_{\phi^{4}}(\phi)} \xi^{\top} K^{-1} \phi=\left\langle\boldsymbol{\xi}^{\top} K^{-1} \phi\right\rangle_{\phi^{4}} \quad\left(\text { Remove }{ }^{\prime}\right)
\end{aligned}
$$

This means $\quad \phi_{r} \leftrightarrow \sum_{r^{\prime}} K_{r, r^{\prime}} S_{r} . \quad$ (A local sum of spins)

[3-2] Variational approximation to ϕ^{4} model

- Similar to the Ising model, generally it is impossible to obtain the exact solution of ϕ^{4} model by analytical means. So, we need some approximation. The simplest one is the mean-field type approximation as always.
- We will first move to the momentum space.
- Then, we will apply the GBF variational principle by taking the Gaussian theory as the trial Hamiltonian.
- As a result, we will obtain the mean-field evaluation of the spatial correlation function, which is called Ornstein-Zernike form.

Switching to the momentum space

Starting from (4), $\mathcal{H}=a^{d} \sum_{\mathbf{r}}\left(\rho\left|\nabla \phi_{\mathbf{r}}\right|^{2}+t \phi_{\mathbf{r}}^{2}+u \phi_{\mathbf{r}}^{4}-h \phi_{\mathbf{r}}\right)$, by Fourier transformation $\phi_{\mathbf{r}}=L^{-d} \sum_{\mathbf{k}} e^{i \mathbf{k r}} \tilde{\phi}_{\mathbf{k}}$, we obtain

$$
\begin{align*}
\mathcal{H} & =\frac{1}{L^{d}} \sum_{\mathbf{k}}\left(\rho k^{2}+t\right)\left|\tilde{\phi}_{\mathbf{k}}\right|^{2} \\
& +\frac{u}{L^{3 d}} \sum_{\mathbf{k}_{1} \cdots \mathbf{k}_{4}} \delta_{\sum_{\mu=1}^{4} \mathbf{k}_{\mu}, \mathbf{0}} \tilde{\phi}_{\mathbf{k}_{1}} \tilde{\phi}_{\mathbf{k}_{2}} \tilde{\phi}_{\mathbf{k}_{3}} \tilde{\mathbf{k}}_{\mathbf{k}_{4}}-h \tilde{\phi}_{\mathbf{0}} . \tag{4}
\end{align*}
$$

Switching to continuous wave numbers,

$$
\begin{align*}
\mathcal{H} & =\int \frac{d^{d} \mathbf{k}}{(2 \pi)^{d}}\left(\rho k^{2}+t\right) \tilde{\phi}_{\mathbf{k}}^{*} \tilde{\phi}_{\mathbf{k}} \\
& +u \int \frac{d^{d} \mathbf{k}_{1} \cdots d^{d} \mathbf{k}_{4}}{(2 \pi)^{4 d}} \delta\left(\sum_{\mu} \mathbf{k}_{\mu}\right) \tilde{\phi}_{\mathbf{k}_{1}} \cdots \tilde{\phi}_{\mathbf{k}_{4}}-h \tilde{\phi}_{\mathbf{0}} \tag{5}
\end{align*}
$$

Supplement: Convention (Fourier transformation)

In this lecture, we use the following conventions:

$$
\begin{aligned}
& a=(\text { lattice constant }), \quad L=(\text { system size }), \quad N \equiv \frac{L^{d}}{a^{d}}=\text { (\# of sites) } \\
& \tilde{\phi}_{\mathbf{k}}=\int_{0}^{L} d^{d} \mathbf{r} e^{-i \mathbf{k r}} \phi_{\mathbf{r}}=a^{d} \sum_{\mathbf{r}} e^{-i \mathbf{k r}} \phi_{\mathbf{r}} \\
& \phi_{\mathbf{r}}=\int_{-\pi / a}^{\pi / a} \frac{d^{d} \mathbf{k}}{(2 \pi)^{d}} e^{i \mathbf{k r}} \tilde{\phi}_{\mathbf{k}}=L^{-d} \sum_{\mathbf{k}} e^{i \mathbf{k r}} \tilde{\phi}_{\mathbf{k}}
\end{aligned}
$$

The tilde ~ is often dropped when there is no fear of confusion.

$$
G\left(\mathbf{r}^{\prime}, \mathbf{r}\right) \equiv\left\langle\phi_{\mathbf{r}^{\prime}} \phi_{\mathbf{r}}\right\rangle, \quad G_{\mathbf{k}^{\prime}, \mathbf{k}} \equiv L^{-d}\left\langle\phi_{\mathbf{k}^{\prime}} \phi_{\mathbf{k}}\right\rangle
$$

For translationally and rotationally symmetric case,

$$
\left.G\left(\mathbf{r}^{\prime}, \mathbf{r}\right)=G\left(\left|\mathbf{r}^{\prime}-\mathbf{r}\right|\right), \quad G_{\mathbf{k}^{\prime}, \mathbf{k}}=\delta_{\mathbf{k}^{\prime}+\mathbf{k}, 0} G_{|\mathbf{k}|},\left.\quad G_{|\mathbf{k}|} \equiv L^{-d}\langle | \phi_{\mathbf{k}}\right|^{2}\right\rangle
$$

GBF variational approximation (1)

Let us consider a trial Hamiltonian with variational parameter $\epsilon_{\mathbf{k}}$,

$$
\begin{aligned}
& \mathcal{H}_{0} \equiv \frac{1}{L^{d}} \sum_{\mathbf{k}} \epsilon_{\mathbf{k}}\left|\phi_{\mathbf{k}}\right|^{2} \\
& Z_{0}=\int D \phi e^{-\frac{1}{L^{d}} \sum_{\mathbf{k}} \epsilon_{\mathbf{k}}\left|\phi_{\mathbf{k}}\right|^{2}}=\prod_{\mathbf{k}} \zeta_{\mathbf{k}} \\
&\left.\left.\quad\langle | \phi_{\mathbf{k}}\right|^{2}\right\rangle_{0}=\frac{L^{d}}{2 \epsilon_{\mathbf{k}}}, \quad \zeta_{\mathbf{k}} \equiv\left(\frac{\pi L^{d}}{\epsilon_{\mathbf{k}}}\right)^{1 / 2} \\
& E_{0}\left.=\left.\frac{1}{L^{d}} \sum_{\mathbf{k}} \epsilon_{\mathbf{k}}\langle | \phi_{\mathbf{k}}\right|^{2}\right\rangle_{0}=\sum_{\mathbf{k}} \frac{\epsilon_{\mathbf{k}}}{L^{d}} \frac{L^{d}}{2 \epsilon_{\mathbf{k}}}=\sum_{\mathbf{k}} \frac{1}{2} \quad \text { (Equipartition) } \\
&-T S_{0}=F_{0}-E_{0}=-\sum_{\mathbf{k}} \frac{1}{2} \log \frac{\pi L^{d}}{\epsilon_{\mathbf{k}}}=\frac{1}{2} \sum_{\mathbf{k}} \log \epsilon_{\mathbf{k}}
\end{aligned}
$$

(Additive constants have been omitted.)

GBF variational approximation (2)

$$
\begin{aligned}
\langle\mathcal{H}\rangle_{0} & \left.=\left.\frac{1}{L^{d}} \sum_{\mathbf{k}}\left(\rho k^{2}+t\right)\langle | \phi_{\mathbf{k}}\right|^{2}\right\rangle_{0}+\frac{u}{L^{3 d}} \sum_{\mathbf{k}_{1} \cdots \mathbf{k}_{\mathbf{4}}} \delta_{\sum \mathbf{k}, \mathbf{0}}\left\langle\phi_{\mathbf{k}_{1}} \phi_{\mathbf{k}_{2}} \phi_{\mathbf{k}_{3}} \phi_{\mathbf{k}_{4}}\right\rangle_{0} \\
& \left.\left.\left.=\left.\frac{1}{L^{d}} \sum_{\mathbf{k}}\left(\rho k^{2}+t\right)\langle | \phi_{\mathbf{k}}\right|^{2}\right\rangle_{0}+\left.\frac{3 u}{L^{3 d}} \sum_{\mathbf{k}, \mathbf{k}^{\prime}}\langle | \phi_{\mathbf{k}}\right|^{2}\right\rangle\left._{0}\langle | \phi_{\mathbf{k}^{\prime}}\right|^{2}\right\rangle_{0} \quad \text { (Wick) }
\end{aligned}
$$

In terms of $\left.\left.G_{\mathbf{k}} \equiv L^{-d}\langle | \phi_{\mathbf{k}}\right|^{2}\right\rangle_{0}=\left(2 \epsilon_{\mathbf{k}}\right)^{-1}$, we obtain
$F_{\mathrm{v}}=\langle\mathcal{H}\rangle_{0}-T S_{0}=\sum_{\mathbf{k}}\left(\rho k^{2}+t\right) G_{\mathbf{k}}+\frac{3 u}{L^{d}}\left(\sum_{\mathbf{k}} G_{\mathbf{k}}\right)^{2}+\frac{1}{2} \sum_{\mathbf{k}} \log \epsilon_{\mathbf{k}}$
Thus we have, $f_{\mathrm{v}}=B+3 u A^{2}+\frac{1}{2 L^{d}} \sum_{\mathbf{k}} \log \epsilon_{\mathbf{k}}$,
where $\quad A \equiv \frac{1}{L^{d}} \sum_{\mathbf{k}} G_{\mathbf{k}}$, and $B \equiv \frac{1}{L^{d}} \sum_{\mathbf{k}}\left(\rho k^{2}+t\right) G_{\mathbf{k}}$.

Stationary condition

$$
\begin{aligned}
& 0= \frac{\partial F_{v}}{\partial \epsilon_{\mathbf{k}}}=\left(\rho k^{2}+t+\sigma\right) \frac{\partial G_{\mathbf{k}}}{\partial \epsilon_{\mathbf{k}}}+\frac{1}{2 \epsilon_{\mathbf{k}}} \\
&\left(\sigma \equiv 6 u A=\frac{6 u}{L^{d}} \sum_{\mathbf{k}} G_{\mathbf{k}}\right) \quad \begin{array}{l}
\text { Spatial fluctuation shifts } \\
\text { the transition point. }
\end{array} \\
&=\left(\rho k^{2}+t+\sigma\right)\left(-\frac{1}{2 \epsilon_{\mathbf{k}}^{2}}\right)+\frac{1}{2 \epsilon_{\mathbf{k}}} \\
& \Rightarrow \quad \epsilon_{\mathbf{k}}=\rho k^{2}+t+\sigma=\rho\left(k^{2}+\kappa^{2}\right) \quad\left(\kappa \equiv \sqrt{\frac{t+\sigma}{\rho}}\right)
\end{aligned}
$$

Ornstein-Zernike form

$$
G_{k} \propto \frac{1}{k^{2}+\kappa^{2}}, \quad \kappa \propto \sqrt{T-T_{c}}
$$

Supplement: Wick's theorem

Theorem 1 (Wick)

When the distribution function is gaussian, any multi-point correlator factorizes in pairs.

Example 2 (4-point correlator)

Ex: When the Hamiltonian is $\mathcal{H}=\frac{1}{2} \phi^{\top} A \phi$ with A being a positive definit matrix,

$$
\begin{aligned}
\left\langle\phi_{1} \phi_{2} \phi_{3} \phi_{4}\right\rangle & =\left\langle\phi_{1} \phi_{2}\right\rangle\left\langle\phi_{3} \phi_{4}\right\rangle+\left\langle\phi_{1} \phi_{3}\right\rangle\left\langle\phi_{2} \phi_{4}\right\rangle+\left\langle\phi_{1} \phi_{4}\right\rangle\left\langle\phi_{2} \phi_{3}\right\rangle \\
& =\Gamma_{12} \Gamma_{34}+\Gamma_{13} \Gamma_{24}+\Gamma_{14} \Gamma_{23}
\end{aligned}
$$

where $\Gamma \equiv A^{-1}$ and $\langle\cdots\rangle \equiv \frac{\int D \phi e^{-\mathcal{H}(\phi)} \ldots}{\int D \phi e^{-\mathcal{H}(\phi)}}$

Supplement: Proof of Wick's theorem

If we define $\equiv \equiv \int D \phi e^{-\frac{1}{2} \phi^{\top} A \phi+\xi^{\top} \phi}$, the correlation function can be expressed as its derivatives,

$$
\left\langle\phi_{k_{1}} \phi_{k_{2}} \cdots \phi_{k_{2 p}}\right\rangle=\left.\Xi^{-1}\left(\frac{\partial}{\partial \xi_{k_{1}}} \cdots \frac{\partial}{\partial \xi_{k_{2 p}}} \equiv\right)\right|_{\xi \rightarrow 0} .
$$

Now notice that $\equiv \propto e^{\frac{1}{2} \xi^{\top} \Gamma \xi}$, which can be expanded as

$$
\equiv=1+\sum_{i j} \frac{\Gamma_{i j}}{2} \xi_{i} \xi_{j}+\frac{1}{2} \sum_{i j} \sum_{k l} \frac{\Gamma_{i j}}{2} \frac{\Gamma_{k l}}{2} \xi_{i} \xi_{j} \xi_{k} \xi_{l}+\cdots
$$

Therefore, the $2 p$-body correlation becomes

$$
\begin{aligned}
& \frac{1}{p!} \sum_{i_{1} j_{1}} \sum_{i_{2} j_{2}} \cdots \sum_{i_{p} j_{p}} \frac{\Gamma_{i_{1} j_{1}}}{2} \frac{\Gamma_{i 2 j_{2}}}{2} \cdots \frac{\Gamma_{i_{p} j_{p}}}{2} \delta_{\left\{k_{1}, k_{2}, \cdots, k_{2 p}\right\},\left\{i_{1}, j_{1}, i_{2}, j_{2}, \cdots, i_{p}, j_{p}\right\}} \\
& \left.\quad=\sum \Gamma_{i_{1} j_{1}} \Gamma_{i_{2} j_{2}} \cdots \Gamma_{i_{p} j_{p}} \quad \text { (Summation over all pairings of }\left\{k_{1}, \cdots, k_{2 p}\right\}\right)
\end{aligned}
$$

Real-space correlation function

$$
\begin{aligned}
G_{\mathbf{k}} & \left.=\left.L^{-d}\langle | \phi_{\mathbf{k}}\right|^{2}\right\rangle=\frac{1}{2 \epsilon_{\mathbf{k}}}=\frac{1}{2\left(\rho k^{2}+t+\sigma\right)} \\
G\left(\mathbf{r}^{\prime}-\mathbf{r}\right) & \equiv\left\langle\phi_{\mathbf{r}^{\prime}} \phi_{\mathbf{r}}\right\rangle=L^{-2 d} \sum_{\mathbf{k}, \mathbf{k}^{\prime}} e^{i \mathbf{k}^{\prime} \mathbf{r}^{\prime}} e^{i \mathbf{k r}}\left\langle\phi_{\mathbf{k}^{\prime}} \phi_{\mathbf{k}}\right\rangle \\
& =L^{-2 d} \sum_{\mathbf{k}, \mathbf{k}^{\prime}} e^{i \mathbf{k}^{\prime} \mathbf{r}^{\prime}} e^{i \mathbf{k} \mathbf{r}} \delta_{\mathbf{k}^{\prime}+\mathbf{k}, \mathbf{0}} G_{\mathbf{k}}=L^{-2 d} \sum_{\mathbf{k}} e^{-i \mathbf{k}\left(\mathbf{r}^{\prime}-\mathbf{r}\right)} \frac{L^{d}}{2 \epsilon_{\mathbf{k}}} \\
G(\mathbf{r}) & =\int \frac{d^{d} \mathbf{k}}{(2 \pi)^{d}} \frac{e^{i \mathbf{k r}}}{2 \epsilon_{\mathbf{k}}}=\frac{1}{2} \int \frac{d^{d} \mathbf{k}}{(2 \pi)^{d}} \frac{e^{i \mathbf{k r}}}{\rho \mathbf{k}^{2}+t+\sigma} \\
& \stackrel{*}{\sim} \begin{cases}\frac{1}{\rho} \frac{\kappa^{d-2}}{(\kappa r)^{\frac{d-1}{2}}} e^{-\kappa r}\left(\kappa r \gg 1, \kappa \equiv \sqrt{\frac{t+\sigma}{\rho}} \frac{1}{\rho}\right) & \left(T>T_{c}\right) \\
& \left(T=T_{c}\right)\end{cases} \\
& (* \cdots \text { see supplement })
\end{aligned}
$$

Mean-field values of ν and η

$$
G(r) \sim \begin{cases}\frac{1}{\rho} \frac{\kappa^{d-2}}{(\kappa r)^{\frac{d-1}{2}}} e^{-\kappa r}\left(\kappa r \gg 1, \kappa \equiv \sqrt{\frac{t+\sigma}{\rho}}\right) & \left(T>T_{c}\right) \\ \frac{1}{\rho} \frac{1}{r^{d-2}} & \left(T=T_{c}\right)\end{cases}
$$

Mean-field value of ν
For $T>T_{c}, \quad G(r) \propto \frac{1}{r^{\frac{d-1}{2}}} e^{-r / \xi}, \quad \xi \propto \frac{1}{\left|T-T_{c}\right|^{\nu}}, \quad \nu_{\mathrm{MF}}=\frac{1}{2}$
Mean-field value of η

$$
\text { At } T=T_{c}, \quad G(r) \propto \frac{1}{r^{d-2+\eta}}, \quad \eta_{\mathrm{MF}}=0
$$

Supplement: Evaluation of the asymptotic form $\left(T>T_{c}\right)$

$$
\begin{aligned}
& \int d \mathbf{k} \frac{e^{i \mathbf{k} \mathbf{r}}}{k^{2}+\kappa^{2}}=\int d \mathbf{k} e^{i \mathbf{k} \mathbf{r}} \int_{0}^{\infty} d t e^{-t\left(k+\kappa^{2}\right)} \\
& \quad=\int_{0}^{\infty} d t e^{-t \kappa^{2}} \int d \mathbf{k} e^{-t k^{2}+i \mathbf{r} \mathbf{k}} \\
& =\int_{0}^{\infty} d t e^{-t \kappa^{2}} \int d \mathbf{k} e^{-t\left(\mathbf{k}-\frac{i}{2 t} \mathbf{r}\right)^{2}-\frac{r^{2}}{4 t}}=\int_{0}^{\infty} d t\left(\frac{\pi}{t}\right)^{\frac{d}{2}} e^{-\kappa^{2} t-\frac{r^{2}}{4 t}}
\end{aligned}
$$

(Here we define u so that $t \equiv \frac{r}{2 \kappa} u$ and $\kappa^{2} t+\frac{r^{2}}{4 t}=\frac{\kappa r}{2}\left(u+u^{-1}\right)$.)

$$
=\int_{0}^{\infty} d u\left(\frac{\pi}{u}\right)^{\frac{d}{2}}\left(\frac{2 \kappa}{r}\right)^{\frac{d}{2}-1} e^{-\frac{\kappa r}{2}\left(u+u^{-1}\right)}
$$

(For $\kappa r \gg 1$, we use $u+u^{-1} \approx 2+\epsilon^{2}$ where $\epsilon \equiv u-1$.)

$$
\approx \pi^{\frac{d}{2}}\left(\frac{2 \kappa}{r}\right)^{\frac{d}{2}-1} e^{-\kappa r}\left(\frac{2 \pi}{\kappa r}\right)^{\frac{1}{2}} \quad \sim \frac{\kappa^{d-2}}{(\kappa r)^{\frac{d-1}{2}}} e^{-\kappa r}
$$

Supplement: Evaluation of the asymptotic form $\left(T=T_{c}\right)$

As before, we have

$$
\int d \mathbf{k} \frac{e^{i \mathbf{k r}}}{k^{2}+\kappa^{2}}=\int_{0}^{\infty} d t\left(\frac{\pi}{t}\right)^{\frac{d}{2}} e^{-\kappa^{2} t-\frac{r^{2}}{4 t}}
$$

Here, by setting $\kappa=0\left(T=T_{c}\right)$,

$$
=\int_{0}^{\infty} d t\left(\frac{\pi}{t}\right)^{\frac{d}{2}} e^{-\frac{r^{2}}{4 t}}
$$

(By defining $\eta \equiv \frac{r^{2}}{4 t}$)

$$
=\left(\frac{r^{2}}{4}\right)^{1-\frac{d}{2}} \pi^{\frac{d}{2}} \Gamma\left(\frac{d}{2}-1\right) \sim \frac{1}{r^{d-2}}
$$

Gaussian MF approximation below $T_{c}(1)$

- To deal with the spontaneous magnetization below T_{c}, we must introduce a symmetry-breaking field η as a new variational parameter,

$$
\mathcal{H}_{0}=L^{-d} \sum_{\mathbf{k}} \epsilon_{\mathbf{k}}\left|\phi_{\mathbf{k}}\right|^{2}-\eta \phi_{\mathbf{k}=\mathbf{0}}
$$

- It is, then, a little tedious but not hard to see that (7) is replaced by

$$
\begin{equation*}
f_{\mathrm{v}} \stackrel{*}{=} B+t m^{2}+u\left(3 A^{2}+6 A m^{2}+m^{4}\right)+\frac{1}{2 L^{d}} \sum_{\mathbf{k}} \log \epsilon_{\mathbf{k}}, \tag{8}
\end{equation*}
$$

where $m \equiv\left\langle\phi_{\mathbf{r}}\right\rangle_{0}$ and, as before,

$$
A \equiv \frac{1}{L^{d}} \sum_{\mathbf{k}} \frac{1}{2 \epsilon_{\mathbf{k}}}, \quad B \equiv \frac{1}{L^{d}} \sum_{\mathbf{k}} \frac{\rho \mathbf{k}^{2}+t}{2 \epsilon_{\mathbf{k}}}
$$

Gaussian MF approximation below $T_{c}(2)$

- From $\partial f_{\mathrm{v}} / \partial m=0$, we obtain

$$
\begin{array}{ll}
& t+6 u A+2 u m^{2}=0 \\
\text { or } & m^{2}=-\frac{t+\sigma}{2 u} \quad(\sigma \equiv 6 u A) \tag{9}
\end{array}
$$

- From $\partial f_{\mathrm{v}} / \partial \epsilon_{\mathbf{k}}=0(\mathbf{k} \neq \mathbf{0})$, we obtain

$$
\epsilon_{\mathbf{k}}=\rho k^{2}+t+6 u\left(A+m^{2}\right) .
$$

Using (9), $\epsilon_{\mathbf{k}}=\rho k^{2}-2(t+\sigma)=\rho\left(k^{2}+\dot{\kappa}^{2}\right) \quad\left(\dot{\kappa}^{2} \equiv \frac{2(t+\sigma)}{\rho}\right)$

- Thus, we have obtained the Ornstein-Zernike type Green's function

$$
G_{k}=\frac{1}{2 \epsilon_{\mathbf{k}}}=\frac{1}{2\left(k^{2}+\hat{\kappa}^{2}\right)} \quad\left(T<T_{c}\right)
$$

The correlation length is $1 / \sqrt{2}$ times smaller than the high- T side.

Supplement: Wick's theorem with symmetry-breaking field

 For deriving (8), since the external field distorts the Gaussian distribution, which is the precondition to the Wick's theorem, we must apply the theorem to the fluctuation $\delta \phi_{\mathbf{r}} \equiv \phi_{\mathbf{r}}-\left\langle\phi_{\mathbf{r}}\right\rangle_{0}$, not ϕ itself. In the momentum space, by defining $\delta \phi_{\mathbf{k}} \equiv \phi_{\mathbf{k}}-\bar{\phi}_{\mathbf{0}} \delta_{\mathbf{k}}\left(\delta_{\mathbf{k}} \equiv \delta_{\mathbf{k}, \mathbf{0}}, \bar{\phi}_{\mathbf{0}}=L^{d} m\right)$,$$
\begin{aligned}
\left\langle\phi_{\mathbf{k}_{1}}\right. & \left.\phi_{\mathbf{k}_{2}} \phi_{\mathbf{k}_{3}} \phi_{\mathbf{k}_{4}}\right\rangle_{0} \\
& =\left\langle\left(\bar{\phi}_{0} \delta_{\mathbf{k}_{1}}+\delta \phi_{\mathbf{k}_{1}}\right)\left(\bar{\phi}_{0} \delta_{\mathbf{k}_{2}}+\delta \phi_{\mathbf{k}_{2}}\right)\left(\bar{\phi}_{0} \delta_{\mathbf{k}_{3}}+\delta \phi_{\mathbf{k}_{3}}\right)\left(\bar{\phi}_{0} \delta_{\mathbf{k}_{4}}+\delta \phi_{\mathbf{k}_{4}}\right)\right\rangle_{0} \\
& =\bar{\phi}_{0}^{4} \delta_{\mathbf{k}_{1}} \delta_{\mathbf{k}_{2}} \delta_{\mathbf{k}_{3}} \delta_{\mathbf{k}_{4}}+\bar{\phi}_{0}^{2}\left(\delta_{\mathbf{k}_{1}} \delta_{\mathbf{k}_{2}}\left\langle\delta \phi_{\mathbf{k}_{3}} \delta \phi_{\mathbf{k}_{4}}\right\rangle_{0}+5 \text { similar terms }\right) \\
& +\left(\left\langle\phi_{\mathbf{k}_{1}} \phi_{\mathbf{k}_{2}}\right\rangle_{0}\left\langle\phi_{\mathbf{k}_{3}} \phi_{\mathbf{k}_{4}}\right\rangle_{0}+2 \text { similar terms }\right)
\end{aligned}
$$

Therefore, we obtain

$$
\begin{aligned}
& \sum_{\mathbf{k}_{1}, \mathbf{k}_{2}, \mathbf{k}_{3}, \mathbf{k}_{4}} \delta_{\sum_{\mathbf{k}}}\left\langle\phi_{\mathbf{k}_{\mathbf{1}}} \phi_{\mathbf{k}_{2}} \phi_{\mathbf{k}_{3}} \phi_{\mathbf{k}_{4}}\right\rangle_{0} \\
& \quad=\bar{\phi}_{0}^{4}+6 \bar{\phi}_{0}^{2} \sum_{\mathbf{k}_{1}}\left\langle\delta \phi_{\mathbf{k}_{1}} \delta \phi_{-\mathbf{k}_{1}}\right\rangle_{0}+3 \sum_{\mathbf{k}_{1}, \mathbf{k}_{3}}\left\langle\phi_{\mathbf{k}_{1}} \phi_{-\mathbf{k}_{1}}\right\rangle_{0}\left\langle\phi_{\mathbf{k}_{3}} \phi_{-\mathbf{k}_{3}}\right\rangle_{0}
\end{aligned}
$$

Exercise

- Consider an Ising model with only 4 spins.

$$
\mathcal{H}=-K\left(S_{1} S_{2}+S_{3} S_{4}\right)-K^{\prime}\left(S_{1} S_{3}+S_{2} S_{4}+S_{1} S_{4}+S_{2} S_{3}\right)
$$

By coarse-graining

$$
\phi_{1} \equiv \frac{1}{2}\left(S_{1}+S_{2}\right) \text { and } \phi_{2} \equiv \frac{1}{2}\left(S_{3}+S_{4}\right)
$$

obtain the exact effective Hamiltonian in terms of ϕ_{1} and ϕ_{2}, and verify the existence of terms proportional to ϕ^{2}, ϕ^{4} and $|\nabla \phi|^{2}\left(=\left(\phi_{1}-\phi_{2}\right)^{2}\right)$, respectively. (If necessary, solve numerically by setting some numerical values of your choice to K and K^{\prime}.)

