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To begin with ...

@ The mean-field theory discussed in the previous section does not tell
us about the spatial correlation.

o In this lecture, starting from the Ising model, we derive ¢* model,
which, we expect, the same long-range behavior as the Ising model.

o We then apply the GBF variational approximation to the ¢*
Hamiltonian, to obtain the mean-field expression for the two-point
correlation function. (Ornstein-Zernike form)
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[3-1] ¢* field theory

o We first see a very “hand-waving" derivation of ¢* field theory
starting from the Ising model and using the coarse-graining.

@ We next see an alternative derivation which looks less hand-waving,
based on the Hubbard-Stratonovich transformation.

@ Since the ¢* theory is obtained by the coarse-graining of the Ising
model, they are supposed to share the same long-range behavior,
while they may differ quantitatively for short-range physics.

o In particuar, we expect, ¢* model belongs to the same universality
class as the Ising model, as has been verified by a number of
arguments and numerical calculations.
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A hand-waving derivation by coarse-graining (1)

@ Let us consider the Ising model on d-dimensional hyper-cubic lattice.
(Hereafter, we use symbols like r and R to spacify lattice points in
stead of / and j.)

@ Divide the whole lattice into cells of size ab, where a is the lattice
constant, and denote the one located at R as Q,5(R). (b > 1)

@ Consider the cell average of spins

br = (%)d > s @)

reQab(R)

@ Consider the coarse—grained Hamiltonian H defined as

ZA s‘(b —H(S)

where ¢ = {(;SR}, S = {5/}, and A(S|¢) (= 0,1) takes 1 if and only
if the condition (1) is satisfied for all cells.
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A hand-waving derivation by coarse-graining (2)

o Let us guess, by intuition, what 7 should be like.

@ There must be two parts: a single-cell part reflecting the physics
inside each cell and a multiple-cell part for interactions.

@ For one-cell part, the entropic effect gives rise to ¢ and ¢* terms (as
in means-field approx.) whereas the interaction will produce —¢?.

@ For multiple-cell part, the interaction among cells is represented by
terms that depend on the gradient, Vr¢. The mirror-image symmetry
allows only even order terms. So, we expect |V¢|? in the lowest order.

@ Putting these together and including the Zeeman term, we obtain
(@) =a? g (VoL + t6” + ug* — ho) (2)

L
= [ dR (p|VP + t6? + ug* — ho) (3)
(p, u are positive constants. t can be either positive or negative,
depending on the temperature.)
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Derivation by the Hubbard-Stratonovich transformation

KgT KN ¢ (r=ri=0)
— KN
ZIsmg = Z eKZ (! Sr Z ez S¢S Cr= 1 (Jr—r'|=a)

0 (otherwise)
QZ/Dq& e~ ® CT' S (1S transformation)
:/D¢e_§<¢TC_1¢ H(2cosh br)
r

2 / Dep e~ K Tadt+8(Ve0?) g~ Tu(~ b0+ (60"

= / Dpe ) = 7,

. 1 1
H(p) = Z <§|v¢r‘2 + (% - 5) |¢r|2 + E|¢r|4)

r
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Supplement: Hubbard-Stratonovich transformation (1)

For an arbitrary positive definite symmetric matrix A and a vector B, we
can show the following,

/ D¢ e_% Zr,r’ Ar,r’ ¢'¢r’+2r Brox
_ / Dep e 38TA+BTo

- / DE|A| Ve 28T6HME (¢ = A2 p = ATY?B)

:/D§|A|_1/2e—§(£—n)2+§(n)2
= (27) 2 |A|"Y2e2(? = (27) 2 |A|1/2e2BTAT'B
By taking KC for A% and S for B,

K _
oisTcs N/D¢e—21,<¢Tc Lp+oTS

Naoki KAWASHIMA (ISSP) Statistical Machanics | April 22, 2019 7 /25



Supplement: Hubbard-Stratonovich transformation (2)

The matrix C is defined as C = ¢/ + A where A is the connection matrix
A1 (r-v=a)
"7 1 0 (Otherwise)

We need its inverse, which we can compute as

-1
C

</—1A+%A2+---)
c C

c 1=

Ol O

This decays exponentially as a function of distance; truncation would not
change things qualitatively, leading to what have been used in the main
text

1 1 1 1
CrllmEh <¢TC_1¢ <2 (e @(W)Z»
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The meaning of ¢ in the HS derivation

For an arbitrary vector &, we have

(€78)1ing = 23" 0 Z STKS+heTS
=27t D¢ Z e 2@ KT'oToTSTHETS (S transformation)
—z;! / D' Z SO -heTK NG OTS (1 — b 4 pe)
=2zt /qu Z 20/ KT HheTK g 4TS (Expand in h)

= Zo_ /D¢ e_H¢4(¢) ETK1p = <£TK_1¢>¢4 (Remove ')

This means ¢, <> Z K:rSr. (A local sum of spins)

rl
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[3-2] Variational approximation to ¢* model

@ Similar to the Ising model, generally it is impossible to obtain the
exact solution of ¢* model by analytical means. So, we need some
approximation. The simplest one is the mean-field type approximation
as always.

@ We will first move to the momentum space.

@ Then, we will apply the GBF variational principle by taking the
Gaussian theory as the trial Hamiltonian.

@ As a result, we will obtain the mean-field evaluation of the spatial
correlation function, which is called Ornstein-Zernike form.
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Switching to the momentum space

Starting from (4), H = a¢ Z (p|V¢r|2 + t? + ugt — h¢r) ,

r
by Fourier transformation ¢, = L9 Z eikrd;k, we obtain

k
1 -
= 73 2K+ 1)’
K
u e e 5 (4)
T34 kzk 52121 k,.,0 D1 Pk ks Py, — oo
1"K4

Switching to continuous wave numbers,

M= [ o ok 0
d9k dvk (5)
+u/#5(2k>¢kl e — bl

Naoki KAWASHIMA (ISSP)

Statistical Machanics |

April 22, 2019 11/ 25



Supplement: Convention (Fourier transformation)

In this lecture, we use the following conventions:
Ld

a = (lattice constant), L = (system size), = = (# of sites)

L
d)k — / ddr e—lkr(z)r — ad Z e_lkr¢r
0 r

™/a d k lkr —d ikr 7
o= |Gy

The tilde ™ is often dropped when there is no fear of confusion.

G(r'.r) = (dvdr), Geyx=L"Don)

For translationally and rotationally symmetric case,

GW.r)=G(IF =), Gey="0wik0Gk> Gk =L (¢l
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GBF variational approximation (1)

Let us consider a trial Hamiltonian with variational parameter ¢y,

1
Ho = FZEkaF (6)
k

Zo = / D¢ e—L% Swexlowl® _ HCk
k

d d\ 1/2
(o = = ck_(i)

07 2 €x
1 e L9 1 . ..
Eo = 7d Z (|6x]%)o Z T2 — Z 5 (Equipartition)
k k
1 L4 1
—TSo—Fo—E():— 2|Og7-r— §Z|ogek
k k

(Additive constants have been omitted.)
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GBF variational approximation (2)

<H 0= Ld z pk2 + t)<|¢k| 0+ 737 L3d Z 6Zk0 ¢k1¢k2¢k3¢k4>

ki--ka
3u

=1q Z(Pk2 + t){|okl*)o + 13d (ox*)o(pw[*o  (Wick)
k K.k’
In terms of Ge = L= (¢ |*)o = (2e) ™,  we obtain
F, = <7‘[>0 — TS5 = Z(pk2 + t (Z Gk> % zk: log ek

k

Thus we have, f, = B + 3uA? —l— 7 Z log e, (7)

1
where A= d g k, and B = F E (pk? + t) Gy
k k
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Stationary condition

oF, 0Gy 1
= = k2 t R —
0 8€k (p T 0') 8€k + 26k
B _ bu -+ Spatial fluctuation shifts
(U =0uA= Ld Ek: Gk) the transition point.

(2 R
= (pk +t+0)( 26§>+26k

t
= e =pk>+t+o=p(k?+K? (/@ —;J)

Ornstein-Zernike form
1
C k2
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Supplement: Wick's theorem

Theorem 1 (Wick)

When the distribution function is gaussian, any multi-point correlator
factorizes in pairs.

Example 2 (4-point correlator)

Ex: When the Hamiltonian is H = %d)TA(j) with A being a positive definit
matrix,

(P1020304) = (P102)(P30a) + (P103)(D204) + (P104)(P263)
= 12034 +T13M 24 + 14023

_ [ D¢ e H(P). ..

where =A% and (---) = [ D e H9)
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Supplement: Proof of Wick's theorem

. — 1 . .
If we define == [ D¢ e_§¢TA¢+5T¢’, the correlation function can be
expressed as its derivatives,

=="1 g i:)’
(Pudln - dhay) = (agkl 0, /oo’

Now notice that = e%gTrg' which can be expanded as

z:1+2 Ut 222” W eeiene+
ij

Therefore, the 2p—body correlatlon becomes

Ly iy >h Civj wz...r"pfp(; o
| o Olkuke, - kep b it i2uz, e ipp}

i1 ij2 ’pJp

= Z Cijilip---Tij, (Summation over all pairings of {ky, -+, kap} )
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Real-space correlation function

1 1
2¢c 2(pk2 +t+ o)

G(F = 1) = (pode) = L7277 ™ (gy00)

G = L(|oul?) =

Kk’
e v H H / Ld
_ L—2d Z elk r elkrqu_k’0 Gy = L—2d Z e—lk(r —l')2_
€k
k,k’ k
ddk eikr 1 ddk eikr
60)= [ oyis =3 | Gy
2m)d 2 2 ) (2m)9pk®+t+o
1 _ml2 gnr (/ﬁ;r>>1 nzd”—") (T>Te)
2P T ’ p ‘
%rd%z (T = Tc)
(% « - see supplement)
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Mean-field values of v and 7

1
G(r)~q [T
°

e rr </<ar>>1, K;E,/H'T") (T>T.)

,dl—z (T = Tc)
Mean-field value of v
For T > T, G(r) o ! e /¢ §o<; _1
Cr r% 9 |T_TC|V7 VMF_2
Mean-field value of n
1
At T: TCy G(r)ocrd——z-l-’fl’ T]MF:O

Naoki KAWASHIMA (ISSP) Statistical Machanics |




Supplement: Evaluation of the asymptotic form (T > T.)

/ dk ——— / dk e’ / dre—tk+r?)
=/ dte” tr? /dk —tk2+irk
m g 2 r2
/ dt e tF /dke -5’ —/ dt( )2 Rt
0 t

(Here we define u so that t = —wand K*t + 4z = 5 (u+u™t).)

o d_
™32 [ 2K 2 . 1
= du <—) 2 —_— e—Tr(U-i-U )
0 u r
(For kr > 1, weuse u+ u"! =2+ ¢ wheree=u—1.)

d 1
41 i -
d (2K 2 pr (2T 2 kd=2
~mT2 | — € —_ ~ 1€
r Kr (kr)2



Supplement: Evaluation of the asymptotic form (T = T)

As before, we have

ek gL
dk—— — [ a4t (-) —Rt— gy
/ k2 + K2 /0 t € )

Here, by setting k =0 (T = T,),

00 d 2
:/ dt (E)2 e
0 t

(By defining n = "Ti)
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Gaussian MF approximation below T, (1)

@ To deal with the spontaneous magnetization below T., we must
introduce a symmetry-breaking field 17 as a new variational parameter,

Ho =L ealdxl* — néw=o
k
@ It is, then, a little tedious but not hard to see that (7) is replaced by

* 2 2 2 4
f, = B + tm? + u(3A% + 6Am*> + m )+2Ld2|ogek, (8)

where m = (¢;)p and, as before,
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Gaussian MF approximation below T, (2)

e From 0f,/Om = 0, we obtain

t 4+ 6uA+2um? =0
2 tHo

or m=-—— (o0 = 6uA) (9)

e From 0f,/0ex = 0 (k # 0), we obtain
ek = pk? +t + 6u(A+ m?).

2(t
Using (9), ex = pk? — 2(t + o) = p(k® + £?) (,@2 = ﬂ)
P
@ Thus, we have obtained the Ornstein-Zernike type Green's function

1 1

Gie = (T<T
KT e 2(K2 1 A2 (T<Te)

The correlation length is 1/+/2 times smaller than the high-T side.
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Supplement: Wick's theorem with symmetry-breaking field

For deriving (8), since the external field distorts the Gaussian distribution,
which is the precondition to the Wick's theorem, we must apply the
theorem to the fluctuation d¢y = ¢, — <¢r)o_, not ¢ itself. In the
momentum space, by defining d¢x = ¢k — dodk (0k = k0, Po = LYm),
<¢k1¢k2¢k3¢k4>0
= ((Godk; + 0¢i,)(P0dk, + 0Pk, )(P0dks + I¢ks)(P0dk, + G0k, ))0
= &36k15k25k35k4 + (5(2) (5k15k2 <5¢k35¢k4>0 + 5 similar terms)
+ ({k, Pk )0 (Pks Pky )0 + 2 similar terms)
Therefore, we obtain

Z 52 k<¢k1 ¢k2 ¢k3 ¢k4>0

ki,ko,ks ks

=G0 +605 > (061,001 )0+3 > (D) 0(Bhs —ks)o

k1 ki,ks
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Exercise
o Consider an Ising model with only 4 spins.
H=—K(515 + S351) — K'(51S5 + S$254 + 5154 + $253)
By coarse-graining
b1 = %(51 +55) and 6y = %(53 S,

obtain the exact effective Hamiltonian in terms of ¢; and ¢», and
verify the existence of terms proportional to ¢, ¢* and

IVo|?(= (¢1 — ¢2)?), respectively. (If necessary, solve numerically by
setting some numerical values of your choice to K and K'.)
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