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In this lecture, we see ...

The MKRG was manageable, but is rather crude an approximation.
Even worse, we do not know when we can expect this approximation
to be good or how we can improve systematically.

Real-space renormalization group method based on tensor-network
representation (TNRG) provides us with a method for computing the
partition function. While TNRG is also an approximation, it comes
with a method for systematic improvements, and may produce the
exact critical exponents in the limit.
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[5-1] Tensor-network renormalization group (TNRG)

Most of statistical-mechanical models on lattices are tensor networks.

Quantum many-body states on lattices are also described by tensor
networks.

As we have seen, after renormalization transformation, we need
infinitely many parameters to describe the resulting system.

By working with the TN representation, and introducing “data
compression” at all length scales, we can overcome both the faults in
the real-space RG.
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What is a tensor network?

When an object is expressed as the result of (full or partial)
contraction of tensor-product of multiple tensors, we call such an
expression a “tensor-network”. An expression such as
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(Si )i∈Ω

∏
k

T k
S
ik
1
,S

ik
2
,··· ,S

iknk

(1)

is a tensor-network, where Ω is a subset of all indices, {ikα}, appearing
multiple times (typically twice) in the summand.

Example:

TS1,S2,S3,S4 =∑
S6,S7,S8,S9

T 1
S1,S8,S5

T 2
S2,S5,S6

T 3
S3,S6,S7

T 4
S4,S7,S8
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Statistical-mechanical models are tensor networks

The partition function of the Ising model on the
square lattice can be expressed as

Z =
∑
S

∏
p : shaded square

W (Sip , Sjp , Skp , Slp)

W (S1,S2,S3, S4) ≡ eK(S1S2+S2S3+S3S4+S4S1)

We can regard W (S1,S2, S3,S4) as a degree-4 tensor.

Then, the above equation is a tensor network representation of the
partition function.
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Graphical notation

In TN-related discussions, we use more diagrams than equations
because it is often much easier to grasp the idea.

For tensors, we often use bulkier symbols than just dots such as
circles, triangles, squares, etc, while we use simple lines for indices.
(This is more natural from the information-scientific point of view
because tensors are the carriers of most of the information.)
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Wave function can be represented as TN (1)

Consider a quantum many-body system defined on a lattice.

A local quantum degree of freedom, say Si , is defined on each site.

Accordingly, we have a local Hilbert space Hi ≡ {|Si 〉i} associated
with each site, e.g., Hi is 2-dimensional for S = 1/2 spin models.

The whole Hilbert space is the product of them H ≡
⊗

i Hi .

Any global wave function |Ψ〉 can be expanded as

|Ψ〉 ≡
∑
{Si}

CS1,S2,··· ,SN |S1, S2, · · · ,SN〉 ≡
∑
S

CS|S〉

where |S1, S2, · · · ,SN〉 ≡ |S1〉1 ⊗ |S2〉2 ⊗ · · · ⊗ |SN〉N .

Now, CS1,S2,··· ,SN can be viewed as a degree-N tensor. It may be
approximated by some tensor network, i.e,

CS ≈ Cont

(∏
k

T k

)
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Wave function can be represented as TN (2)

CS ≈ Cont

(∏
k

T k

)

=

Note that CS has dN parameters (d = 2 for S = 1/2 spin systems),
whereas the tensor network can be specified by only O(N) number of
parameters. By the tensor network representation, we may be able to
reduce the computation for large N down to a manageable level.
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Trivial Tensor-network RG

Let us condider classical systems, and ask how
we can use the tensor network for RG.

How can we replace the original tensor lattice
into something similar but with the unit cell
bigger than the original?

Let us solve this problem starting from the trivial
TNRG:

T́Ś1,Ś2,Ś3,Ś4
≡

∑
S9,S10,S11,S12

T 1
S1,S9,S12,S8

× T 2
S2,S3,S10,S9

T 3
S10,S4,S5,S11

T 4
S12,S11,S6,S7

where Ś1 ≡ (S1,S2), Ś2 ≡ (S3, S4), · · ·

⇓
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What’s wrong with trivial TNRG?

Using T́ , we can exactly express the original
partition function with lattice constant twice
larger than the original, which is good.

However, the dimension of each index of the new
tensor is χ2 where χ is the index dimension of
the original tensor.

To be more specific, to handle an L× L system
we end up with a big tensor with χL-dimensional
indices. (We cannot go to so large L.)

To make the whole procedure practically useful
for larger systems, we need to make the index
dimension back to χ in each iteration.

Data compression is necessary!
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Rank-reducer

What we need is a ‘rank-reducer’.

A rank-reducer is a tensor whose rank (when
viwed as a matrix) is χ in stead of χ2, and
whose insertion keep things unchanged.

If such a thing exists, we can define triangle
operators as illustrated in the figure by SVD.

Then, by cutting the network at the reduced
indices, we can define the renormalized tensor
with index dimension χ, as we disired.

Now, we must ask whether such a magical
rank-reducer exists or not, and if it does, how we
can compute it.

Naoki KAWASHIMA (ISSP) Statistical Machanics I May 13, 2019 11 / 22



Low-rank approximation (LRA)

How can we optimize the rank-reducer X for the given rank χ?

For the cost function, we take the amplitude of the local disturbance
caused by the insertion of X , i.e.,

Let us regard A and B as χ4 × χ2 matrices and the rank-reducer X as
a χ2 × χ2 matrix whose rank is χ (or less).

Low-rank approximation problem

Suppose 3 integers, l ,m, n, that satisfy l < m < n. For two given n ×m
matrices A and B, find a rank-l , m ×m matrix X that minimizes

C (X ) ≡ |ABT − AXBT|2. (2)
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Solution to LRA problem (1)

We want the rank-l matrix X
that minimizes

C ≡ |ABT − AXBT|2.

Consider the QR-decomposition,

A = QARA, B = QBRB .

Then, C ≡ |RAR
T
B − RAXR

T
B |2

Consider SVD: RAR
T
B = UΛV T.

If X satisfies

RAXR
T
B = ÛΛ̂V̂ T, (3)

it is optimal. (∗) (Here, Û, Λ̂,
and V̂ are truncated matrices at
the l-th row and/or column.)
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Solution to LRA problem (2)

Now, let us define “triangule
operators,” PA and PB , by

PA ≡ RT
B V̂ Λ̂−

1
2 ,

PB ≡ RT
A ÛΛ̂−

1
2

Then, because RAR
T
B = UΛV T,

RAPA = ÛΛ̂
1
2 ,

RBPB = V̂ Λ̂
1
2 .

Therefore, X ≡ PAP
T
B , satisfies

Eq.(3), RAXR
T
B = ÛΛ̂V̂ T, and

therefore is the optimal
rank-reducer.
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Supplement: Theorem for Low-Rank Approximation (LRA)

Theorem 1 (Eckhart-Young-Mirsky)

For a given n ×m matrix A, consider its
approimation by a rank-l (l ≤ m ≤ n) matrix X
and its error E 2 = |A− X |2 where |A|2 ≡ TrATA.
Let A = UΛV T be the singular value
decomposition (SVD) of A with an n×m diagonal
matrix Λ and n and m dimensional unitaries, U
and V , respectively. Then,

E 2 ≥ λ2
l+1 + λ2

l+2 + · · ·+ λ2
m

where λi is the i-th largest singular value. The
lower bound is attained by X ≡ ÛΛ̂V̂ T where ’ ’̂
represents truncation at the l-th row/column.

Λ ≡

λ1 0 · · · 0

0 λ2

. . .
.
.
.

.

.

.
. . .

. . . 0
0 · · · 0 λm
0 · · · · · · 0

.

.

.

.

.

.
0 · · · · · · 0


.

λ1 ≥ λ2 ≥ · · · ≥ λm ≥ 0
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Supplement: LRA used in the derivation

Theorem 2 (LRA)

Consider an m ×m matrix Y expressed as Y = RAR
T
B with RA and RB ,

and consider its SVD, Y = UΛV T . Then, Y ’s optimal LRA of the form
RAXR

T
B with rank l (l < m) matrix X is obtained when RAXR

T
B = ÛΛ̂V̂ T

.

Proof: When the condition of the theorem is satisfied,

|Y − RAXR
T
B |2 = |UΛV T − ÛΛ̂V̂ T|2

= |UΛV T − UΛ̃V T|2 = |Λ− Λ̃|2 =
m∑

k=l+1

λ2
k ,

where Λ̃ is Λ with singular values λk (k > l) replaced by 0. Therefore,
RAXR

T
B saturates the inequality of the EYM theorem.
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Summary of the TNRG procedure

1 QR-decomposition of A and B matrices.

A = QARA, B = QBRB

2 SVD. RAR
T
B = UΛV T

3 Compute the “triangle operators”.

PA ≡ RT
B V̂ Λ̂−

1
2 ,

PB ≡ RT
A ÛΛ̂−

1
2

4 Do the same for other directions.

5 Using the triangular operators, contract four
original tensors to obtain the new element
tensor T́ .

6 Repeat these till the desired system size has
been reached.
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TNRG provides accurate estimates

The free energy can be obtained
to the accuracy of nearly 8
digits. (“TRG” in the figure.)
(“TRG” is essentially the same, but technically different

way of realizing TNRG from the one discussed in this

lecture. See Levin and Nave, Phys. Rev. Lett. 99,

120601 (2007) for details.)

An improvement (“TNR”)
pushes it even up to 10 digits.

[Evenbly and Vidal, Physical Review Letters

115, 180405 (2015)]
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How we can compute other quantities

From the method described so far, we can obtain F ,E ,S and C . What
about the magnetization, M, χ, and the Binder ratio?

Define “impurity tensors”,

T (0) ≡ T , T (n) ≡ 0 (n > 1)

T
(1)
S1S2S3S4

≡ TS1S2S3S4 ×m(S1,S2,S3, S4)

where m = (S1 + S2 + S3 + S4)/2 .

Define “renormalized impurity tensors”:

T́ (n) ≡
∑

n1n2n3n4
(
∑

k nk=n)

Cont(T (n1)T (n2)T (n3)

×T (n4) × (triangle tensors))

At the end of all iterations,
〈Mn〉 =

∑
S1S2

T
(n)
S1S2S1S2

/
∑
S1S2

T
(0)
S1S2S1S2
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Application of TNRG to q-state Potts model (1)

q-state Potts model in 2D.
[S. Morita and N.K., Computational
Physics Communications, 236 65-71
(2019).]

n-th moments of magnetization are
computed (e.g., magnetization
(n = 1), susceptibility (n = 2),
Binder ratio (n = 4), etc)

The result of 20 RG iterations (i.e.,
L = 220 ≈ 106) was obtaind for
q = 2, 3, · · · , 7 for the truncation
dimension (‘bond-dimension’)
χ = 48.
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Application of TNRG to q-state Potts model (2)

According to the finite-size scaling
(FSS), which we will discuss later, the
Binder ratio is defined as U4 ≡
〈M4〉/〈M2〉2 depends on T and L as(

dU4

dT

)
T=Tc

=
1

ν
log L+a+bL−ω+· · ·

For first-order transitions, 1/ν = d is
expected.

The 1st order nature of the transition of
5-state Potts model has been
confirmed. (CF: ξ ≈ 2500 at Tc).

[S. Morita and N.K., Comp. Phys.

Comm. 236, 65-71 (2019).]
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Summary

Tensor-network RG (TNRG) is a scheme that realizes “data
compression” at every length scale.

With TNRG, we can systematically improve the real-space RG by
adjusting the compression level, i.e., by increasing the cut-off
dimension χ (often called “bond-dimension”).

TNRG provides us with rather accurate estimates of various quantities
and critical indices.

While we have seen just one way of implementing the idea, there are
many proposals for realizing TNRG. (MERA, TRG, TNR, loop-TNR,
etc)
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