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To begin with ...

@ There are cases where we can rely on the mean-field theory even for
the critical behavior. (Ginzburg criterion)

@ In one dimension, we may be able to carry out coarse-graining and
obtain correct critical behavior. However, in higher dimensions, similar
approaches would not yield computationally tractable solutions.

@ Real-space renormalization group transformation can be
approximately carried out (Migdal-Kadanoff RG) and produces a
non-trivial (non-MF) evaluates of critical exponents. However, they
do not generally agree with the correct values, nor they provide a way
to systematically improve the approximation.
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[4-1] When can MF be valid? — Ginzburg criterion

o First, we will elucidate the meaning of the asymptotic validity and
draw a general criterion.

@ Then, we will check whether the mean-field theory satisfies the
criterion in a self-consistent way.

@ We will find that it is indeed self-consistent in some cases, but not in
general. (Ginzburg criterion)
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Asymptotic validity of MF approximation

o Consider a system just below the critical temperature, where there is
a finite but small spontaneous magnetization.

@ The mean-field (MF) description should be valid when the relative
fluctuation is negligible, i.e., d¢y < (¢r)

@ Typically, this condition is not satisfied at the scale of lattice

constant, e.g., for the Ising model, (¢;) ~ 0 and d¢, = \/(d¢?) ~ 1.

@ However, the MF description can still be qualitatively correct at larger
length-scales relevant to the critical behavior, i.e., &.

- 1
@ So, we consider the local average of ¢, i.e., pr = o Z Oy
rGQb(R)

o The condition for asymptotic validity of MF is d¢r < ($R) for some
b~ ¢
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Self-consistency of mean-field approximation (1)

7 - At]  p
o For (¢), below T, we have (¢)2p ~ m? ~ — w2
@ For the amplitude of the fluctuation, we have

- 2d . 2
((5¢)2>MF = <€> Z <5¢r/5¢r> ~ ,ng (* see supplement)

b
r,r' €Qp(R)
1 da u>
> —
e e (€70

@ For d > 4, the condition is asymptotically satisfied as one approaches
the critical point, whereas it is not for d < 4.

@ Thus, the validity condition becomes —

Ginzburg criterion (Upper critical dimension)

The MF approximation to ¢* model cannot be correct asymptotically
below 4 dimensions while it can be correct above 4.
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Supplement: MF estimate of fluctuation (1)

In Lecture 3, we saw

1 HId—Z

Y l"é )~ d—1
(F00800) ~ 5

from which we obtain

e—n’|r’—r|

(v ~ V—At)

o
e K| Ar|

Z (0O by ) ~ (f)d M

d—1
rr' €Qp(R) b Ar (ﬁ/|Ar|) 2

i
_ K L 1 1 w'b d=1 _
~ P drrd 1p—4e KT~ d_IZ/ dxx 2 e X
b Jo (k'r) T b pr'> Jo

LGOI T X7 (x < 1)
plﬁlzbd f~o (a dimension-less constant) (X > 1)
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Supplement: MF estimate of fluctuation (2)

Naoki KAWASHIMA (ISSP) Statistical Machanics |



[4-2] General renormalization group (RG) transformation

ks

— o
= e T
o pqrﬁ”fﬁﬁ a -
fvee yescaling

@ In the derivation of the Ginzburg criterion, we introduced the
coarse-graining transformation as a Gedankenexperiment.

@ The RG transformation consists of two steps: (i) coarse-graining and
(ii) rescaling. Schematically,

H,(S|K, L) 0, Hau(5 |K, L) (i), H,(S|K, b1L)
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[4-2] General Renormalization Group Transformation

o

—>
P (:/_ﬁ a
2N paviel a =
) YEscal] hg

@ In the coarse-graining step, we define coarse-grained field and carry
out the configuration-space summation of the partition function, with
the constraint imposed by the coarse-grained fields.

@ In the rescaling step, we redefine the length-scale and the field
variables by multiplying them with scaling factors so that the effective
Hamiltonian may be the same form as the original one.
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Coarse-graining

In the coarse-graining step of the RG procedure, we first define
“coarse-grained field", SR, which is defined in terms of S, in the
neighborhood of R, i.e., Sg = Y ({Sr}reqy(r)), with some function X(---).
More formally,

e—Ha(S|K7L) N e_Hab(§|R7L) = ZA(; |Z(5))e_rHa(S‘K7L)7
S

where K is a set of parameters such as K = (3, H).

Example 1 (Ising chain with b = 3)

¥(51,5,5) =5 (Simple decimation)
¥(51,52,8)=(S51+ S+ 53)/3 (Local Average)
¥ (51, 52,53) =sign(S1 + S2 + S3) (Majority rule)
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Example: Coarse-graining of Ising chain (b = 2)
@ Consider the Ising model of size L = 28 in one dimension.
Ha(SIK, L) = —KZSS,+1 — hZS (K = (K, h))

@ For even L, let us adopt the decimation for the coarse-graining:

Si=S (fori=0,2,4,---,L—2)

@ Then, e~ Haa(SIKL) — Z e Ma(SIK:L)  For h = 0 we have
51,83,+,51-1
—HQa(S\K Ly _ Z K(So+52)S1 Z K(S52+54)S; Z K(SL—2+50)S1-1
e e e
Si-1

eksos2eK5254 ... eKS1—2%

~ e—H2a(5|K7L) (R = ath(th2 K))
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Example: Rescaling of Ising chain (b = 2)

o Letususet =e 2

of the coarse-graining on t is

2t

f=—.
1+ t2

@ The rescaling in the present case is simply

F=r/2, $=5, and f=%

@ Together with the coarse-graining, we obtain the whole RG
transformation,

2t

t,L/2), with t= T2

H.(S|t, L) % Ha(S
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Example: Critical exponent v

@ From the whole RG procedure, we can deduce
e 4 L (5,50) ¢ = (5iSp); ~ e /e

@ Because 7 = r/2,

f=2) (i=12%)

1+ t2
e Since f ~ 2t near the fixed-point t = 0,

§(t) = 2¢(2t).

@ Therefore, for t =~ 0,

£(t) ~ % =1 (Exact))
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Can we do the same in 2D case? (1)

Tom
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Can we do the same in 2D case? (2)

o Coarse-graining by decimation.
S;=S, forreQ ={(2ma,2na)\m,n=0,1,2,--- ,L/2}

@ The partial trace can be taken (at least formally)

e_H23(§7R) Ty e_,HE(S’K)

{Sheavar

@ In general, unlike the 1D case, I:Iza contains terms other than the
two-body nearest-neighbor interactions. For example, it contains the
long-range interaction —KS,»S, where [r — ¢'| > a, as well as
many-body interactions such as — Ky, rprar, Sty Srp Ses Sr, -

@ Therefore, it is not feasible to study such a model (unless we use
machines).

Naoki KAWASHIMA (ISSP) Statistical Machanics | May 10, 2019 15 / 23



Can we do the same in 2D case? (3)

The renormalized Hamiltonian

is more like than =
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[4-3] Migdal-Kadanoff approximation for 2D Ising model

g v I 0

> * :g; = ) —f= =

@ Bunch up two vertical lines.
o Take the partial trace of intermediate spins (x). (Step @)

th K = th> K
@ Bunch up two horizontal lines. (Step @)
K =2K

& i T I [

o Take the partial trace of intermediate spins (x).

simple Migdal-Kadanoff

t= ln (t=thK, t =thK)
T1e VT T
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RG fixed point and 1/v (general argument)
@ Suppose some RG transformation (RGT) yields

t = Rp(t) (b: the rescaling factor, e.g., Ry(t) = 12Tti4)

o We define the RG fixed-point t. by t. = Rp(tc).
@ Then, the ‘deviation’ from the fixed-point changes by RGT as
5t — 0t =t —tc = Rp(t) — Rp(te) = Aot (A = Ry(tc))

@ The correlation length after RGT must be smaller than the original by
factor b. So, we obtain £(\dt) ~ b~1£(dt), which leads to

L= log b
“log )\

£(0t) oc ()" where AV =b~1  or

(1)
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RG fixed point and 1/v (numerical estimates)

@ For the Migdal-Kadanoff RGT for 2D Ising model, we have

2t2
Ry(te) = 1 +Ct4 =t.— t.=0.54368---
C

(cf: toxact = /2 —1=0.4142---)

@ With some arithmatics, we can get

Ri(te) = 21—t

=yt =1/v ~logl.676/log?2 ~ 0.747

~ 1.676

(Cf: yfxact =1, ytanean field _ 2)

Not bad, but ad-hoc (not obvious how to improve).

Naoki KAWASHIMA (ISSP) Statistical Machanics | May 10, 2019 19 /23



An improvement of MKRG

o Consider the MKRG step in which b lines, instead of 2, are bunched
up at a time. The resulting RG transformation will be

K = bK and thK =th? K, or
th K = th?(bK)

(The order of bunching and tracing was changed.)

@ “bunching-up” two lines to one might be too crude. It may become
less harmful if we bunch-up as small number of lines as possible.

@ For b=1+4 X (A < 1), defining t = th K, we obtain

f = Ry(t) =t+ A1 — t?)atht + Atlogt, or
dR,

= (1 —t?)atht +tlogt = f(t)

dlogt

Naoki KAWASHIMA (ISSP) Statistical Machanics | May 10, 2019 20 /23



Infinitesimal RG (general argument)

@ In general, suppose some RG transformation with continuous scaling
factor b = e yields

. dR(t)
fim —ax = (o)

@ Obviously, the fixed-point is determined by t. = f(t.).

@ Starting from the previously obtained expression for 1 /v, we get

Ye=— =

dR
1 . |Og <#> te 1 dRH—/\ 1
v logb A dt
d
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Infinitesimal MKRG (numerical estimates)
e From t. = f(t.)=(1— tf)ath te + tc log te,, we obtain
tC:\/E—lztfxaCt !
@ As for y;, we have

ye = f(tc) = 0.7535 - - ,

slightly closer to y£*°* = 1 than the simple MKRG with b = 2.

Better, but still ad-hoc (not obvious how to further improve).
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Exercise

@ By solving the 1D Ising model, compute the correlation function
G(r) = (5,50) and the correlation length &. Verify & oc t71.

(5,S0) = Tr (TL—'aT'a) / Tr <TL)
where

Tsis = ef'° (2 x 2 matrix)
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