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To begin with ...

There are cases where we can rely on the mean-field theory even for
the critical behavior. (Ginzburg criterion)

In one dimension, we may be able to carry out coarse-graining and
obtain correct critical behavior. However, in higher dimensions, similar
approaches would not yield computationally tractable solutions.

Real-space renormalization group transformation can be
approximately carried out (Migdal-Kadanoff RG) and produces a
non-trivial (non-MF) evaluates of critical exponents. However, they
do not generally agree with the correct values, nor they provide a way
to systematically improve the approximation.
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[4-1] When can MF be valid? — Ginzburg criterion

First, we will elucidate the meaning of the asymptotic validity and
draw a general criterion.

Then, we will check whether the mean-field theory satisfies the
criterion in a self-consistent way.

We will find that it is indeed self-consistent in some cases, but not in
general. (Ginzburg criterion)
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Asymptotic validity of MF approximation

Consider a system just below the critical temperature, where there is
a finite but small spontaneous magnetization.

The mean-field (MF) description should be valid when the relative
fluctuation is negligible, i.e., δφr � 〈φr〉
Typically, this condition is not satisfied at the scale of lattice
constant, e.g., for the Ising model, 〈φr〉 ≈ 0 and δφr =

√
〈δφ2

r 〉 ≈ 1.

However, the MF description can still be qualitatively correct at larger
length-scales relevant to the critical behavior, i.e., ξ.

So, we consider the local average of φ, i.e., φ̄R ≡
1

bd

∑
r∈Ωb(R)

φr

The condition for asymptotic validity of MF is δφ̄R � 〈φ̄R〉 for some
b ∼ ξ.
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Self-consistency of mean-field approximation (1)

For 〈φ̄〉, below Tc , we have 〈φ̄〉2MF ∼ m2 ∼ |∆t|
u
∼ ρ

uξ2

For the amplitude of the fluctuation, we have

〈(δφ̄)2〉MF =
(a
b

)2d ∑
r,r′∈Ωb(R)

〈δφr′δφr〉
∗∼ ξ2

ρbd
(∗ see supplement)

Thus, the validity condition becomes
ρ

uξ2
� 1

ρξd−2

(
ξd−4 � u

ρ2

)
For d > 4, the condition is asymptotically satisfied as one approaches
the critical point, whereas it is not for d < 4.

Ginzburg criterion (Upper critical dimension)

The MF approximation to φ4 model cannot be correct asymptotically
below 4 dimensions while it can be correct above 4.
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Supplement: MF estimate of fluctuation (1)

In Lecture 3, we saw

〈δφr′δφr〉 ∼
1

ρ

κ′d−2

(κ′r)
d−1

2

e−κ
′|r′−r| (κ′ ≈

√
−∆t)

from which we obtain

〈(δφ̄)2〉 =
(a
b

)2d ∑
r,r′∈Ωb(R)

〈δφr′δφr〉 ∼
(a
b

)d∑
∆r

ρ−1κ′d−2

(κ′|∆r|)
d−1

2

e−κ
′|∆r|

∼ 1

bd

∫ b

0
dr rd−1 ρ

−1κ′d−2

(κ′r)
d−1

2

e−κ
′r ∼ 1

bd
1

ρκ′2

∫ κ′b

0
dx x

d−1
2 e−x

∼ f (κ′b)

ρκ′2bd

(
f (x) ∼

{
x

d+1
2 (x � 1)

f∞ (a dimension-less constant) (x � 1)

)
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Supplement: MF estimate of fluctuation (2)
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[4-2] General renormalization group (RG) transformation

In the derivation of the Ginzburg criterion, we introduced the
coarse-graining transformation as a Gedankenexperiment.

The RG transformation consists of two steps: (i) coarse-graining and
(ii) rescaling. Schematically,

Ha(S |K, L)
(i)
−−→ Hab(S̃ |K̃, L)

(ii)
−−→ Ha(Ś |Ḱ, b−1L)
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[4-2] General Renormalization Group Transformation

In the coarse-graining step, we define coarse-grained field and carry
out the configuration-space summation of the partition function, with
the constraint imposed by the coarse-grained fields.

In the rescaling step, we redefine the length-scale and the field
variables by multiplying them with scaling factors so that the effective
Hamiltonian may be the same form as the original one.

Naoki KAWASHIMA (ISSP) Statistical Machanics I May 10, 2019 9 / 23



Coarse-graining

In the coarse-graining step of the RG procedure, we first define
“coarse-grained field”, S̃R, which is defined in terms of Sr in the
neighborhood of R, i.e., S̃R = Σ({Sr}r∈Ωb(R)), with some function Σ(· · · ).
More formally,

e−Ha(S |K,L) → e−Hab(S̃|K̃,L) ≡
∑
S

∆(S̃ |Σ(S))e−Ha(S|K,L),

where K is a set of parameters such as K ≡ (β,H).

Example 1 (Ising chain with b = 3)

Σ(S1,S2,S3) = S2 (Simple decimation)

Σ(S1,S2,S3) = (S1 + S2 + S3)/3 (Local Average)

Σ(S1,S2,S3) = sign(S1 + S2 + S3) (Majority rule)
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Example: Coarse-graining of Ising chain (b = 2)

Consider the Ising model of size L ≡ 2g in one dimension.

Ha(S |K, L) = −K
L−1∑
i=0

SiSi+1 − h
L−1∑
i=0

Si (K ≡ (K , h))

For even L, let us adopt the decimation for the coarse-graining:

S̃i = Si (for i = 0, 2, 4, · · · , L− 2)

Then, e−H2a(S̃|K̃ ,L) =
∑

S1,S3,··· ,SL−1

e−Ha(S |K ,L). For h = 0 we have

e−H2a(S̃ |K̃ ,L) =
∑
S1

eK(S0+S2)S1
∑
S3

eK(S2+S4)S3 · · ·
∑
SL−1

eK(SL−2+S0)SL−1

∼ eK̃S0S2eK̃S2S4 · · · eK̃SL−2S0 ∼ e−H2a(S̃ |K̃ ,L) (K̃ ≡ ath(th2 K ))
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Example: Rescaling of Ising chain (b = 2)

Let us use t ≡ e−2K in stead of K for the parameter. Then, the effect
of the coarse-graining on t is

t̃ =
2t

1 + t2
.

The rescaling in the present case is simply

ŕ ≡ r/2, Śŕ ≡ S̃r, and t́ ≡ t̃.

Together with the coarse-graining, we obtain the whole RG
transformation,

Ha(S |t, L)
RG−−→
b=2

Ha(Ś |t́, L/2), with t́ =
2t

1 + t2
.
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Example: Critical exponent ν

From the whole RG procedure, we can deduce

e−r/ξ(t) ∼ 〈SrS0〉t = 〈SŕS0〉t́ ∼ e−ŕ/ξ(t́)

Because ŕ = r/2,

ξ(t) = 2ξ(t́)

(
t́ =

2t

1 + t2

)
.

Since t́ ≈ 2t near the fixed-point t = 0,

ξ(t) ≈ 2ξ(2t).

Therefore, for t ≈ 0,

ξ(t) ∼ 1

t
⇒ ν = 1 (Exact!)
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Can we do the same in 2D case? (1)
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Can we do the same in 2D case? (2)

Coarse-graining by decimation.

S̃r ≡ Sr for r ∈ Ω′ ≡ {(2ma, 2na)|m, n = 0, 1, 2, · · · , L/2}

The partial trace can be taken (at least formally)

e−H̃2a(S̃,K̃) ≡ Tr
{Sr}r∈Ω\Ω′

e−Ha(S,K)

In general, unlike the 1D case, H̃2a contains terms other than the
two-body nearest-neighbor interactions. For example, it contains the
long-range interaction −Krr′Sr′Sr where |r − r′| > a, as well as
many-body interactions such as −Kr1r2r3r4Sr1Sr2Sr3Sr4 .

Therefore, it is not feasible to study such a model (unless we use
machines).
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Can we do the same in 2D case? (3)

The renormalized Hamiltonian

is more like than .

Naoki KAWASHIMA (ISSP) Statistical Machanics I May 10, 2019 16 / 23



[4-3] Migdal-Kadanoff approximation for 2D Ising model

Bunch up two vertical lines.
Take the partial trace of intermediate spins (×). (Step 1©)

th K̃ = th2 K

Bunch up two horizontal lines. (Step 2©)

Ḱ = 2K̃

Take the partial trace of intermediate spins (×).

simple Migdal-Kadanoff

t́ =
2t2

1 + t4
(t ≡ thK , t́ ≡ th Ḱ )
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RG fixed point and 1/ν (general argument)

Suppose some RG transformation (RGT) yields

t́ = Rb(t) (b: the rescaling factor, e.g., R2(t) = 2t2

1+t4 )

We define the RG fixed-point tc by tc = Rb(tc).

Then, the ‘deviation’ from the fixed-point changes by RGT as

δt → δt́ = t́ − tc = Rb(t)− Rb(tc) ≈ λδt (λ ≡ R ′b(tc))

The correlation length after RGT must be smaller than the original by
factor b. So, we obtain ξ(λδt) ≈ b−1ξ(δt), which leads to

ξ(δt) ∝ (δt)−ν where λ−ν = b−1 or ν ≡ log b

log λ
. (1)
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RG fixed point and 1/ν (numerical estimates)

For the Migdal-Kadanoff RGT for 2D Ising model, we have

R2(tc) =
2t2

c

1 + t4
c

= tc → tc = 0.54368 · · ·

(cf: texact
c =

√
2− 1 = 0.4142 · · · )

With some arithmatics, we can get

R ′2(tc) =
2(1− tc)

tc
≈ 1.676

→ yt ≡ 1/ν ≈ log 1.676/ log 2 ≈ 0.747

(cf: y exact
t = 1, ymean field

t = 2)

Not bad, but ad-hoc (not obvious how to improve).

Naoki KAWASHIMA (ISSP) Statistical Machanics I May 10, 2019 19 / 23



An improvement of MKRG

Consider the MKRG step in which b lines, instead of 2, are bunched
up at a time. The resulting RG transformation will be

K̃ = bK and th Ḱ = thb K̃ , or

th Ḱ = thb(bK )

(The order of bunching and tracing was changed.)

“bunching-up” two lines to one might be too crude. It may become
less harmful if we bunch-up as small number of lines as possible.

For b = 1 + λ (λ� 1), defining t ≡ thK , we obtain

t́ = Rb(t) = t + λ(1− t2) ath t + λt log t, or

dRb

d log t
= (1− t2) ath t + t log t ≡ f (t)
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Infinitesimal RG (general argument)

In general, suppose some RG transformation with continuous scaling
factor b = eλ yields

lim
λ→0

dR(t)

dλ
= f (t).

Obviously, the fixed-point is determined by tc = f (tc).

Starting from the previously obtained expression for 1/ν, we get

yt =
1

ν
=

log
(
dRb
dt

)
tc

log b
=

1

λ

(
dR1+λ

dt
− 1

)
=

d

dt

(
R1+λ − t

λ

)
=

d

dt

(
R1+λ − R1

λ

)
=

(
d

dt
f (t)

)
tc
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Infinitesimal MKRG (numerical estimates)

From tc = f (tc) = (1− t2
c ) ath tc + tc log tc ,, we obtain

tc =
√

2− 1 = texactc !

As for yt , we have

yt = f ′(tc) = 0.7535 · · · ,

slightly closer to y exact
t = 1 than the simple MKRG with b = 2.

Better, but still ad-hoc (not obvious how to further improve).
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Exercise

By solving the 1D Ising model, compute the correlation function
G (r) ≡ 〈SrS0〉 and the correlation length ξ. Verify ξ ∝ t−1.

hint:

〈SrS0〉 = Tr
(
T L−rσT rσ

)/
Tr
(
T L
)

where

TS ′S ≡ eKS
′S (2× 2 matrix)

σ =

(
1 0
0 −1

)
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