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[2-1] Mean-field approximation

In this lecture we will see:

Molecular-field theory does not gives us the free energy.

Gibbs-Bogoliubov-Feynman inequality give us a very systematic and
frexible framework for constructiong the mean-field-type
approximations.
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Molecular field theory revisited

In the molecular-field theory, the effect of environment is replaced by
an additional term, in the case of Ising ferromagnet, we focus on a
single spin, say S0, and replace the Hamiltonian as

H = −J
∑
ij

SiSj − H
∑
i

Si → HMF = −HMFS0 − HS0

It is also argued that the right choice of the effective field is

HMF = J
∑
j

〈Sj〉

The uniformity condition m = 〈Si 〉 (independent of i) yields,

m = tanh(β(H + zJm)) (z = (number of nearest-neighbors))
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Why should we complain?

In principle, we have multiple solutions of the self-consistent equation.

The molecular-field theory does not tell us which solution we should
choose.

If the theory allowed us to compute the free energy for each solution,
we would be able to tell which one to take.
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Gibbs-Bogoliubov-Feynman (GBF) inequality

Theorem 1 (GBF inequality)

For two Hamiltonians H(S) and H0(S) defined on the same space S ∈ Ω,

Fv ≡ F0 + 〈H −H0〉0 ≥ F , (1)

where F and F0 are the free-energies of H and H0 respectively and 〈· · · 〉0
is the thermal average with respect to H0.

Variational calculation

When H(S) is the Hamiltonian of the system that we want to study but is
not solvable, by taking H0(Λ, S) for H0 in (1) that also depends on a list
of parameters Λ and is solvable for any Λ, Fv (Λ) gives us the upper
bound of the correct free energy. (And it is computable!)
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GBF inequality from information-scientific view-point

Theorem 2 (Relation to Kullback-Leibler divergence)

The “error” in the variational free-energy is proportional to the
Kullback-Leibler divergence of the thermodynamic distribution of H0

relative to that of H.

More precisely,

Fv − F = kBT IKL[ρ0|ρ] (2)

where

ρ0 ≡ e−βH0/Z0, and ρ ≡ e−βH/Z (3)

and

IKL[P|Q] ≡
∑
S

P(S) log
P(S)

Q(S)
(4)

(Z and Z0 are partition functions of H and H0 respectively.)
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Proof of Theorem 2

IKL

[
Z−10 e−βH0

∣∣∣Z−1e−βH
]

=
∑
S

(
e−βH0(S)

Z0
log

(
e−βH0(S)

Z0

)
− e−βH0(S)

Z0
log

(
e−βH(S)

Z

))

= − log Z0 + 〈−βH0〉0 + log Z − 〈−βH〉0

= βF0 − β〈H0〉0 − βF + β〈H〉0

= β(Fv − F )
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Kullback-Leibler information measure is positive

IKL[P|Q]

=
∑
S

P(S) log
P(S)

Q(S)
= −

∑
S

P(S) log
Q(S)

P(S)

≥ −
∑
S

P(S)

(
Q(S)

P(S)
− 1

)
(because log(x) ≤ x − 1)

=
∑
S

(Q(S)− P(S)) = 1− 1 = 0

Remark

This inequality together with Theorem 2 proves Theorem 1.
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Quantum extention

Though the theorems have been proved for classical systems, the
corresponding quantum version of them can be also proved.

For the extension, the KL divergence must be generaized to

IKL[P|Q] ≡ Tr (P(log P − log Q)) (5)

where P and Q are now density operators satisfying Tr (P) =
Tr (Q) = 1.

Only non-trivial part in the proof of the quantum extension is the
positivity of the KL information. The rest is straight-forward simply
by replacing

∑
S by Tr.
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Proof of quantum extention (1)

Theorem 3 (Positivity of quantum KL divergence)

For any density operators P and Q,

IKL[P|Q] ≡ Tr (P log P − P log Q) ≥ 0 (6)

Proof:

Let us take the basis set in which P is diagonal, i.e., Pij = piδij .

For some unitary operator U, Qij = uikqku∗jk
With this uij ,

IKL[P|Q] =
∑
i

pi log pi − pi

∑
j

aij log qj

 (aij ≡ |uij |2)

Naoki KAWASHIMA (ISSP) Statistical Machanics I April 15, 2019 10 / 16



Proof of quantum extention (2)

Now, notice that aij ≥ 0,
∑

i aij =
∑

j aij = 1.

Let us define p′ij = piaij , q′ij = qjaij .

Then, these can be regarded as the classical distribution function in
the squared Hilbert space H × H ≡ { (ij) | i , j ∈ H}:

p′ij ≥ 0, q′ij ≥ 0,
∑
ij

p′ij =
∑
ij

q′ij = 1

Now, we can see∑
ij

p′ij log p′ij =
∑
i

pi log pi +
∑
ij

piaij log aij∑
ij

p′ij log q′ij =
∑
ij

piaij log qj +
∑
ij

piaij log aij ,

Thus we have obtained IKL[P|Q] =
∑

ij p′ij log(p′ij/q′ij) ≥ 0
(because the RHS is the classical KL information). (QED)
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Variational approximation to the Ising model (1)

For the target Hamiltonian H ≡ −J
∑

ij SiSj − H
∑

i Si , let us take
the “trial” Hamiltonian H0 ≡ −Λ

∑
i Si . where Λ is a variational

parameter.

Then, our variational free energy is

Fv = F0 + 〈H −H0〉0
= 〈H〉0 − S0T

where S0 ≡ T−1(〈H0〉0 − F0) is the entropy of the H0 system

By introducing m ≡ 〈Si 〉0 = tanhβΛ,

〈H0〉0 = −z

2
NJm2 − HNm S0 = Nσ(m) (7)

σ(m) ≡ −kB

(
1 + m

2
log

1 + m

2
+

1−m

2
log

1−m

2

)
(8)
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Variational approximation to the Ising model (2)

Variational free-energy density

fv ≡
Fv

N
= −zJm2

2
− Hm − Tσ(m)

The GBF inequality tells us that we should minimize fv with respect
to λ. Since fv depends on λ only through m, the stational condition
∂fv/∂λ = 0 leads to ∂fv/∂m = 0.

From this, we obtain the same as the molecular-field approx.:

∂fv
∂m

= 0 ⇒ m = tanhβHMF (HMF ≡ zJm + H). (9)
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Mean-field free energy — Landau expansion

We have also obtained the explicit expression for the free energy.

Since its behavior near m ≈ 0 is most important for the critical
phenomena, let us expand fv with respect to m.

fv = −zJ

2
m2 − Hm − kBT

(
log 2− m2

2
− m4

12

)
(10)

From the condition (coefficient of m2) = 0, we obtain kBTc = zJ.

Near T ≈ Tc , we can get the Landau expansion:

fv ≈ f 0
v + tm2 + um4 − Hm (11)

where f 0
v ≡ −zJ log 2, t ≡ (kBT − zJ)/2 and u ≡ zJ/12
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[2-2] Summary of Lecture 2

Molecular-field theory does not give us the free energy.

Gibbs-Bogoliubov-Feynman inequality give us a very systematic and
frexible framework for constructiong the mean-field-type
approximations that also provides the free energy.

Landau expansion is useful in having a clear view of the phase
transitions.
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Homework

Veryfy (7) and (8).

At the point where we have arrived at (9), m is just a variational
parameter and its physical meaning is not yet clear. Give the reason
why we can interprete it as the magnetization.

Following the example of the Ising model in the lecture, obtain the
Landau expansion of the 3-state Potts model by taking the trial
Hamiltonian

H0 ≡ −Λ
∑
i

δSi ,1. (12)

This time, the order parameter should be m ≡ 〈δSi ,1〉 − 1/3. What is
the essential difference from the Ising case?

Submit your report on one of these problems at the beginning of the
next lecture.
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