
Art of Computation

--- How to deal with quantum systems
without quantum computers? ---

Naoki Kawashima



Path Integral Formulation
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The way we use to do it --- Local Update① Choose one square② Propose a new state③ Generate a random number④ Accept the proposed state if 
the random number is 
smaller than a certain value



Shortcomings of local update

• Local (conventional) algorithms are slow.
--- Critical slowing down, 

slowing down due to small ∆τ, etc.

• Local algorithms are sometimes non-ergodic
--- The total magnetization never changes

• Off diagonal quantities cannot be measured efficiently



Cluster Algorithms for Quantum Spin Systems■ Monte Carlo methods with graphical variables
---- Swendsen & Wang■ Path-integral representation of the partition function
---- Feynman, Suzuki■ Loop algorithm for quantum Monte Carlo
---- Evertz, Lana & Marcu■ Generalization to larger (S>1/2) spins
---- N.K. & Gubernatis■ Continuous Imaginary time limit
---- Beard & Wiese■ Improved estimators for off diagonal quantities
---- Brower, Chandrasekharan & Wiese■ Solution to negative sign problems in some cases
---- Chandrasekharan & Wiese



Monte Carlo methods with
auxiliary graphical variables
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Loop Algorithm 
=

Generalized Fortuin-Kasteleyn Representation
+

Path Integral Formulation



Types of graphs
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Generalization to larger spins
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One MC step for larger spins
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Related method (1)
--- Stochastic Series Expansion (SSE) ---
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SSE is also a Markov process in the space of (S,G) just 
like the loop algorithm with path-integral scheme.

SSE is simpler because of the absence of τ. Apart from it,
it's essentially the same as the path-integral scheme.



Related method (2)
--- Worm Algorithm ---

State space is 
extended by 
including paricle 
number
non-conserving 
states.

With this extension we can overcome the difficulty
due to strong external field.



Related Methods

� Representations:
� Path integral representation (Suzuki)
� Series expansion (Handscomb, Sandvik)

� Updating methods:
� Local updates
� Loop updates (Everts et al)
� Worm updates (Prokofev et al)

… All 2 x 3 = 6 combinations are possible.  (Troyer)



Classical Picture for Quadrupolar Phase

Ferromagnetic

Antiferromagnetic

Spin Nematic 
(or Quadrupolar)

Paramagnetic
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High-Order Interaction and Quadrupole Order

Quadrupole (or higher) order
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… never exists in S=1/2 spin systems



High-Order Interaction and Quadrupole Order

Quadrupole order may appear in

●Bilinear-Biquadratic Spin Model for S≧1

●Heisenberg model (S≧2) with strong cubic anisotropy

●XY model with strong tetragonal anisotropy
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Bilinear-Biquadratic Model with S=1
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Invariant under SU(2) spin rotation
Invariant under SU(3) spin rotation at θ/π=-3/4,-1/2,1/4,1/2
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1D Phase Diagram
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Chubukov Phase in 1D

Chubukov 1991 :

Negative energy spin wave 

mode in dimer phase

Disordered phase with a finite gap 

exists  between ferromagnetic phase and dimer phase

The intermediate phase (Chubukov Phase)
= " Disordered version of spin nematic phase "

( cf: Haldane phase = " Disordered version of antiferromagnetic 
phase " )
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Gap at k=π

Fath & Solyom 1995:
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Calculation of the k=π gap

Fath & Solyom 1995:

Exact diagonalization for

Crossing point of  L×∆ curves
approaches θ= -3π/4

… no gapped phase

π=∆k



Dimer order parameter (D) in 1D
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Singh & Gelfand 1988:

Series expansion …
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D vs θ at T = 0

Quantum Monte Carlo

Roughly consistent
with the standard
picture (i.e. no inter-
mediate region)

But not conclusive for
Chubukov phase

Harada, Kawashima, Batista & Gubernatis (2001)



Dimerization Order Parameter

θ/π = −0.6

D2/L  diverges

… Probably this is
in the dimer regime
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Dimerization Order Parameter

θ/π = −0.7

D2/L  stays constant

… Probably this is
NOT in the dimer 
regime
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Harada, Kawashima, Batista & Gubernatis (2001)



Quadrupole Moment

θ/π = −0.6

Q2/L stays constant

… Probably this is
in the dimer regime
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Harada, Kawashima, Batista & Gubernatis (2001)



Quadrupole Moment

θ/π = −0.7

L

LQ /2

64,32,16,8,4,2,1=β

β
Q2/L seems to diverge

… Probably this is
in some semi-ordered
or gapless regime

The straight line 
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Summary 
--- Weakly ordered spin nematic phase ---

� We have found evidences for the presence of an 
intermediate phase.

� The intermediate phase is characterized by the 
divergence of quadrupolar structure factor.

� However, the phase is gapless as Fath and Solyom 
claimed, in contrast to Chubukov's prediction.



Cluster Algorithm for biquadratic model

Graphs that appear

� Negative sign difficulty in the positive θ region
� "Double" graphs
� No freezing

1. Antiferromagnetic regime
… single horizontal and double horizontal

2. Ferromagnetic regime
… single cross and double cross graphs

3. Spin-nematic regime
… double horizontal and double cross graphs

4. SU(3) points are represented by a single kind of double graphs
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"Algorithmic Phase Diagram"
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Magnetic Moment in 2D

Uniform Magnetization Staggered Magnetization

No magnetic order in the intermediate region

Harada and Kawashima (2001)



Quadrupole Moment in 2D

T=0
L=8,16,32

The intermediate phase is a quadrupolar phase.

Harada and Kawashima (2001)



Specific Heat in 3D

Sharp peak with clear size dependence
… 2nd order phase transition with α>0, or 1st order

(cf: For dipolar transitions, α<0)

Harada and Kawashima (2001)



Quadrupole Moment vs Temperature

Very sharp, like a first order phase transition

Harada and Kawashima (2001)



Summary

Monte Carlo method:� Robust� Dimensionality does not matter much� Enhanced by various different updating methods.� Graphical decomposition reflects the symmetry 
properties of the model.
1) Types of graphs change at points of higher

symmetry
2) Hamiltonians with higher symmetry are

represented by a fewer types of graphs.


